Package ‘minpack.lm’

March 1, 2013

Version 1.1-7

Title R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds

Author Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess, Ben Bolker

Maintainer Katharine M. Mullen <mullenkate@gmail.com>

Description The nls.lm function provides an R interface to lmder and lmdif from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls-like calls using the nlsLM function.

License GPL-3 + file LICENSE

NeedsCompilation yes

Repository CRAN

Date/Publication 2013-03-01 08:01:04

R topics documented:

 nls.lm .. 2
 nls.lm.control .. 7
 nlsLM .. 8

Index 13
nls.lm

Addresses NLS problems with the Levenberg-Marquardt algorithm

Description

The purpose of nls.lm is to minimize the sum square of the vector returned by the function fn, by a modification of the Levenberg-Marquardt algorithm. The user may also provide a function jac which calculates the Jacobian.

Usage

nls.lm(par, lower=NULL, upper=NULL, fn, jac = NULL, control = nls.lm.control(), ...)

Arguments

par A list or numeric vector of starting estimates. If par is a list, then each element must be of length 1.
lower A numeric vector of lower bounds on each parameter. If not given, the default lower bound for each parameter is set to -Inf.
upper A numeric vector of upper bounds on each parameter. If not given, the default upper bound for each parameter is set to Inf.
fn A function that returns a vector of residuals, the sum square of which is to be minimized. The first argument of fn must be par.
jac A function to return the Jacobian for the fn function.
control An optional list of control settings. See nls.lm.control for the names of the settable control values and their effect.
... Further arguments to be passed to fn and jac.

Details

Both functions fn and jac (if provided) must return numeric vectors. Length of the vector returned by fn must not be lower than the length of par. The vector returned by jac must have length equal to length(fn(par,...)) \cdot length(par).

The control argument is a list; see nls.lm.control for details.

Successful completion.

The accuracy of nls.lm is controlled by the convergence parameters ftol, ptol, and gtol. These parameters are used in tests which make three types of comparisons between the approximation par and a solution par0. nls.lm terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision, then nls.lm only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that fn as well as jac are reasonably well behaved. If this condition is not satisfied, then nls.lm may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning nls.lm with tighter tolerances.
First convergence test.
If $|z|$ denotes the Euclidean norm of a vector z, then this test attempts to guarantee that

$$|fvec| < (1 + ftol)|fvec_0|,$$

where $fvec_0$ denotes the result of fn function evaluated at par_0. If this condition is satisfied with $ftol \simeq 10^{-k}$, then the final residual norm $|fvec|$ has k significant decimal digits and info is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the recommended value for $ftol$ is the square root of the machine precision.

Second convergence test.
If D is the diagonal matrix whose entries are defined by the array diag, then this test attempt to guarantee that

$$|D(par - par_0)| < ptol|D par_0|,$$

If this condition is satisfied with $ptol \simeq 10^{-k}$, then the larger components of $D par$ have k significant decimal digits and info is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of $D par$ may have large relative errors, but if diag is internally set, then the accuracy of the components of par is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for $ptol$ is the square root of the machine precision.

Third convergence test.
This test is satisfied when the cosine of the angle between the result of fn evaluation $fvec$ and any column of the Jacobian at par is at most $gtol$ in absolute value. There is no clear relationship between this test and the accuracy of nls.lm, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (info = 4) should be examined carefully. The recommended value for $gtol$ is zero.

Unsuccessful completion.

Unsuccessful termination of nls.lm can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or an excessive number of iterations.

Improper input parameters.
info is set to 0 if $\text{length}(\text{par}) = 0$, or $\text{length}(fvec) < \text{length}(\text{par})$, or $ftol < 0$, or $ptol < 0$, or $gtol < 0$, or $\text{maxfev} \leq 0$, or $\text{factor} \leq 0$.

Arithmetic interrupts.
If these interrupts occur in the fn function during an early stage of the computation, they may be caused by an unacceptable choice of par by nls.lm. In this case, it may be possible to remedy the situation by rerunning nls.lm with a smaller value of factor.

Excessive number of function evaluations.
A reasonable value for maxfev is $100 \cdot (\text{length}(\text{par}) + 1)$. If the number of calls to fn reaches maxfev, then this indicates that the routine is converging very slowly as measured by the progress of $fvec$ and info is set to 5. In this case, it may be helpful to force diag to be internally set.

Excessive number of function iterations.
The allowed number of iterations defaults to 50, can be increased if desired.

The list returned by `nls.lm` has methods for the generic functions `coef`, `deviance`, `df.residual`, `print`, `residuals`, `summary`, `confint`, and `vcov`.

Value

A list with components:

- `par` The best set of parameters found.
- `hessian` A symmetric matrix giving an estimate of the Hessian at the solution found.
- `fvec` The result of the last `fn` evaluation; that is, the residuals.
- `info` info is an integer code indicating the reason for termination.
 - 0 Improper input parameters.
 - 1 Both actual and predicted relative reductions in the sum of squares are at most `ftol`.
 - 2 Relative error between two consecutive iterates is at most `ptol`.
 - 3 Conditions for `info = 1` and `info = 2` both hold.
 - 4 The cosine of the angle between `fvec` and any column of the Jacobian is at most `gtol` in absolute value.
 - 5 Number of calls to `fn` has reached `maxfev`.
 - 6 `ftol` is too small. No further reduction in the sum of squares is possible.
 - 7 `ptol` is too small. No further improvement in the approximate solution `par` is possible.
 - 8 `gtol` is too small. `fvec` is orthogonal to the columns of the Jacobian to machine precision.
 - 9 The number of iterations has reached `maxiter`.
- `message` character string indicating reason for termination

- `diag` The result list of `diag`. See Details.
- `niter` The number of iterations completed before termination.
- `rsstrace` The residual sum of squares at each iteration. Can be used to check the progress each iteration.
- `deviance` The sum of the squared residual vector.

Note

The public domain FORTRAN sources of MINPACK package by J.J. Moré, implementing the Levenberg-Marquardt algorithm were downloaded from http://ftp.netlib.org/minpack, and left unchanged. The contents of this manual page are largely extracted from the comments of MINPACK sources.
References

See Also

optim, nls, nls.lm.control

Examples

```
######## example 1

## values over which to simulate data
x <- seq(0,5,length=100)

## model based on a list of parameters
getPred <- function(parS, xx) parS$a * exp(xx * parS$b) + parS$c

## parameter values used to simulate data
pp <- list(a=9,b=-1, c=6)

## simulated data, with noise
simDNoisy <- getPred(pp,x) + rnorm(length(x),sd=.1)

## plot data
plot(x,simDNoisy, main="data")

## residual function
residFun <- function(p, observed, xx) observed - getPred(p,xx)

## starting values for parameters
parStart <- list(a=3,b=-.001, c=1)

## perform fit
nls.out <- nls.lm(par=parStart, fn = residFun, observed = simDNoisy, xx = x, control = nls.lm.control(nprint=1))

## plot model evaluated at final parameter estimates
lines(x,getPred(as.list(coef(nls.out)), x), col=2, lwd=2)

## summary information on parameter estimates
summary(nls.out)

######## example 2

## function to simulate data
f <- function(TT, tau, NO, a, f0) {
    expr <- expression(NO*exp(-TT/tau)*(1 + a*cos(f0*TT)))
    eval(expr)
}
```
helper function for an analytical gradient
j <- function(TT, tau, N/zero.noslash, a, f/zero.noslash) {
 expr <- expression(N/zero.noslash*exp(-TT/tau)*(1 + a*cos(f/zero.noslash*TT)))
 c(eval(D(expr, "tau")), eval(D(expr, "N/zero.noslash")),
 eval(D(expr, "a")), eval(D(expr, "f/zero.noslash")))
}

values over which to simulate data
TT <- seq(0, 8, length=5/zero.noslash1)

parameter values underlying simulated data
p <- c(tau = 2.2, N/zero.noslash = 1/zero.noslash/zero.noslash/zero.noslash, a = /zero.noslash.25, f/zero.noslash = 8)

get data
Ndet <- do.call("f", c(list(TT = TT), as.list(p)))

with noise
N <- Ndet + rnorm(length(Ndet), mean=Ndet, sd=./zero.noslash1*max(Ndet))

plot the data to fit
par(mfrow=c(2,1), mar = c(3,5,2,1))
plot(TT, N, bg = "black", cex = /zero.noslash.5, main="data")

define a residual function
fcn <- function(p, TT, N, fcall, jcall)
 (N - do.call("fcall", c(list(TT = TT), as.list(p))))

define analytical expression for the gradient
fcn.jac <- function(p, TT, N, fcall, jcall)
 -do.call("jcall", c(list(TT = TT), as.list(p))))

starting values
guess <- c(tau = 2.2, N/zero.noslash = 1500, a = 0.25, f0 = 10)

to use an analytical expression for the gradient found in fcn.jac
uncomment jac = fcn.jac
out <- nls.lm(par = guess, fn = fcn, jac = fcn.jac,
 fcall = f, jcall = j,
 TT = TT, N = N, control = nls.lm.control(nprint=1))

get the fitted values
N1 <- do.call("f", c(list(TT = TT), out$par))

add a blue line representing the fitting values to the plot of data
lines(TT, N1, col="blue", lwd=2)

add a plot of the log residual sum of squares as it is made to decrease each iteration; note that the RSS at the starting parameter values is also stored
plot(1:(out$nit+1), log(out$rsstrace), type="b",
 main="log residual sum of squares vs. iteration number",
 xlab="iteration", ylab="log residual sum of squares", pch=21,bg=2)
get information regarding standard errors
summary(out)

nls.lm.control

Control various aspects of the Levenberg-Marquardt algorithm

Description

Allow the user to set some characteristics of the Levenberg-Marquardt nonlinear least squares algorithm implemented in nls.lm.

Usage

```r
nls.lm.control(ftol = sqrt(.Machine$double.eps),
               ptol = sqrt(.Machine$double.eps),
               gtol = 0, diag = list(), epsfcn = 0,
               factor = 100, maxfev = integer(), maxiter = 50, nprint = 0)
```

Arguments

- **ftol**: non-negative numeric. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most $ftol$. Therefore, $ftol$ measures the relative error desired in the sum of squares.

- **ptol**: non-negative numeric. Termination occurs when the relative error between two consecutive iterates is at most $ptol$. Therefore, $ptol$ measures the relative error desired in the approximate solution.

- **gtol**: non-negative numeric. Termination occurs when the cosine of the angle between the result of fn evaluation $fvec$ and any column of the Jacobian is at most $gtol$ in absolute value. Therefore, $gtol$ measures the orthogonality desired between the function vector and the columns of the Jacobian.

- **diag**: a list or numeric vector containing positive entries that serve as multiplicative scale factors for the parameters. Length of diag should be equal to that of par. If not, user-provided diag is ignored and diag is internally set.

- **epsfcn**: (used if jac is not provided) is a numeric used in determining a suitable step for the forward-difference approximation. This approximation assumes that the relative errors in the functions are of the order of epsfcn. If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

- **factor**: positive numeric, used in determining the initial step bound. This bound is set to the product of factor and the $|diag \times par|$ if nonzero, or else to factor itself. In most cases factor should lie in the interval $(0.1,100)$. 100 is a generally recommended value.

- **maxfev**: integer; termination occurs when the number of calls to fn has reached maxfev. Note that nls.lm sets the value of maxfev to $100 \times (\text{length(par)} + 1)$ if maxfev = integer(), where par is the list or vector of parameters to be optimized.
maxiter: positive integer. Termination occurs when the number of iterations reaches maxiter.

nprint: is an integer; set nprint to be positive to enable printing of iterates.

Value

A list with exactly nine components:

ftol
ptol
gtol
diag
epsfcn
factor
maxfev
nprint

with meanings as explained under 'Arguments'.

References

See Also

nls.lm

Examples

nls.lm.control(maxiter = 4)

nlsLM

Standard 'nls' framework that uses 'nls.lm' for fitting

Description

nlsLM is a modified version of nls that uses nls.lm for fitting. Since an object of class 'nls' is returned, all generic functions such as anova, coef, confint, deviance, df.residual, fitted, formula, logLik, predict, print, profile, residuals, summary, update, vcov and weights are applicable.
Usage

nlsLM(formula, data = parent.frame(), start, jac = NULL,
algorithm = "LM", control = nls.lm.control(),
lower = NULL, upper = NULL, trace = FALSE, subset,
weights, na.action, model = FALSE, ...)

Arguments

formula a nonlinear model formula including variables and parameters. Will be coerced
to a formula if necessary.
data an optional data frame in which to evaluate the variables in formula and weights.
Can also be a list or an environment, but not a matrix.
start a named list or named numeric vector of starting estimates.
jac A function to return the Jacobian.
algorithm only method "LM" (Levenberg-Marquardt) is implemented.
control an optional list of control settings. See nls.lm.control for the names of the
settable control values and their effect.
lower A numeric vector of lower bounds on each parameter. If not given, the default
lower bound for each parameter is set to -Inf.
upper A numeric vector of upper bounds on each parameter. If not given, the default
upper bound for each parameter is set to Inf.
trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares and the pa-
rameter values are printed at the conclusion of each iteration.
subset an optional vector specifying a subset of observations to be used in the fitting
process.
weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.
na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Value na.exclude can be useful.
model logical. If true, the model frame is returned as part of the object. Default is
FALSE.
...

Additional optional arguments. None are used at present.

Details

The standard nls function was modified in several ways to incorporate the Levenberg-Marquardt
type nls.lm fitting algorithm. The formula is transformed into a function that returns a vector
of (weighted) residuals whose sum square is minimized by nls.lm. The optimized parameters are
then transferred to stats:::nlsModel in order to obtain an object of class 'nlsModel'. The internal
C function C_nls_iter and stats:::nls_port_fit were removed to avoid subsequent "Gauss-
Newton", "port" or "plinear" types of optimization of nlsModel. Several other small modifications
were made in order to make all generic functions work on the output.
Value

A list of

- `m` an `nlsModel` object incorporating the model.
- `data` the expression that was passed to `nls` as the data argument. The actual data values are present in the environment of the `m` component.
- `call` the matched call.
- `convInfo` a list with convergence information.
- `control` the control list used, see the `control` argument.
- `na.action` the "na.action" attribute (if any) of the model frame.
- `dataClasses` the "dataClasses" attribute (if any) of the "terms" attribute of the model frame.
- `model` if `model = TRUE`, the model frame.
- `weights` if `weights` is supplied, the weights.

Author(s)

Andrej-Nikolai Spiess and Katharine M. Mullen

References

J.J. Moré©, "The Levenberg-Marquardt algorithm: implementation and theory," in Lecture Notes
105-116.

See Also

`nls`, `nls`, `nls.lm`, `nls.lm.control`, `optim`

Examples

```r
### Examples from 'nls' doc ###
DNase1 <- subset(DNase, Run == 1)
## using a selfStart model
fm1DNase1 <- nlsLM(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
## using logistic formula
fm2DNase1 <- nlsLM(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1))

## all generics are applicable
coef(fm1DNase1)
confint(fm1DNase1)
deviance(fm1DNase1)
```
weighted nonlinear regression using
inverse squared variance of the response
gives same results as original 'nls' function
Treated <- Puromycin[Puromycin$state == "treated",]
var.Treated <- tapply(Treated$rate, Treated$conc, var)
var.Treated <- rep(var.Treated, each = 2)

Pur.wt1 <- nls(rate ~ (Vm * conc)/(K + conc), data = Treated,
 start = list(Vm = 2/zero.noslash/zero.noslash, K = /zero.noslash.1), weights = 1/var.Treated^2)

Pur.wt2 <- nlsLM(rate ~ (Vm * conc)/(K + conc), data = Treated,
 start = list(Vm = 200, K = 0.1), weights = 1/var.Treated^2)

all.equal(coef(Pur.wt1),coef(Pur.wt2))

'nlslm' can fit zero-noise data
in contrast to 'nls'
x <- 1:10
y <- 2*x + 3
Not run:
nls(y ~ a + b * x, start = list(a = /zero.noslash.12345, b = /zero.noslash.54321))
End(Not run)
nlslm(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321))

Examples from 'nlslm' doc
values over which to simulate data
x <- seq(0.5, length = 100)
model based on a list of parameters
getPred <- function(parS, xx) parS$a * exp(xx * parS$b) + parS$c
parameter values used to simulate data
pp <- list(a = 9,b = -1, c = 6)
simulated data with noise
simDNoisy <- getPred(pp, x) + rnorm(length(x), sd = .1)
make model
mod <- nlslm(simDNoisy ~ a * exp(b * x) + c,
 start = c(a = 3, b = -0.001, c = 1),
 trace = TRUE)
plot data
plot(x, simDNoisy, main = "data")
plot fitted values
lines(x, fitted(mod), col = 2, lwd = 2)
create declining cosine
with noise
TT <- seq(0, 8, length = 501)
tau <- 2.2
N0 <- 1000
a <- 0.25
f0 <- 8
Ndet <- N0 * exp(-TT/tau) * (1 + a * cos(f0 * TT))
N <- Ndet + rnorm(length(Ndet), mean = Ndet, sd = .01 * max(Ndet))
make model
mod <- nlsLM(N ~ N0 * exp(-TT/tau) * (1 + a * cos(f0 * TT)),
 start = c(tau = 2.2, N0 = 1500, a = 0.25, f0 = 10),
 trace = TRUE)

plot data
plot(TT, N, main = "data")
plot fitted values
lines(TT, fitted(mod), col = 2, lwd = 2)
Index

*Topic **nonlinear**
 nls.lm, 2
 nls.lm.control, 7
 nlsLM, 8

*Topic **optimize**
 nls.lm, 2
 nls.lm.control, 7
 nlsLM, 8

*Topic **regression**
 nls.lm, 2
 nls.lm.control, 7
 nlsLM, 8

anova, 8

coef, 4, 8
confin, 4, 8

deviance, 4, 8
df.residual, 4, 8

fitted, 8
formula, 8, 9

logLik, 8

na.exclude, 9
na.fail, 9
na.omit, 9
nls, 5, 8–10
nls.lm, 2, 8–10
nls.lm.control, 2, 5, 7, 9, 10
nlsLM, 8

optim, 5, 10
options, 9

predict, 8
print, 4, 8
profile, 8

residuals, 4, 8