Package ‘hapsim’

February 15, 2013

Title Haplotype Data Simulation

Version 0.3

Date 2005-09-22

Author Giovanni Montana

Maintainer Giovanni Montana <g.montana@imperial.ac.uk>

Description Package for haplotype data simulation. Haplotypes are
generated such that their allele frequencies and linkage
disequilibrium coefficients match those estimated from an input data set.

Depends MASS

License GPL (>= 2)

Repository CRAN

Date/Publication 2012-12-14 17:44:25

NeedsCompilation yes

R topics documented:

ACEdata .. 2
allelefreqs .. 2
divlocus .. 3
haplodata ... 4
haplofreqs ... 5
haplosim ... 6
ldplot .. 8
mergemats ... 9

Index 10
ACEdata

Description

ACE (angiotensin I converting enzyme) data set

Usage

data(ACEdata)

Format

A data set with 22 haplotypes and 52 SNPs.

Source

References

allelefreqs

Description

Estimates allele frequencies from a binary matrix

Usage

allelefreqs(dat)

Arguments

- **dat**

 A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

- **freqs**

 Vector of allele "0" frequencies

- **all.polym**

 If TRUE, all loci are polymorphic

- **non.polym**

 Vector of non-polymorphic loci, if any
Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)
x <- allelefreqs(ACEdata)
hist(x$freqs)
```

divlocus

Diversity score

Description

Compute a measure of genetic diversity at each locus

Usage

`divlocus(dat)`

Arguments

- **dat**

 A binary matrix, rows are haplotypes and columns are binary markers

Details

This function implements a measure of diversity for a locus \(j \) as in Clayton (2002). If \(z_{ij} \) represents the allele \(j \) of haplotype \(i \), for \(i = 1, \ldots, N \) and assuming that alleles are coded as 0 and 1, the diversity measure can be written as

\[
D_j = 2 \times N (\sum_{i=1}^{N} z_{ij}^2 - (\sum_{i=1}^{N} z_{ij})^2)
\]

Value

A vector containing the diversity measure for all markers

Author(s)

Giovanni Montana
References

Examples

data(ACEdata)
divlocus(ACEdata)

haplo.data

Haplotype object creator

Description

Creates an haplotype data object needed for simulating haplotypes with haplosim. This object also contains some summary statistics about the real data.

Usage

haplo.data(dat)

Arguments

dat A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

freqs Allele frequencies
cor Correlation matrix (LD coefficients)
div Locus-specific diversity measure
cov Covariance matrix for the normal distribution

Author(s)

Giovanni Montana

References

See Also

See also haplosim
Examples

```r
data(ACEdata)
# creates the haplotype object
x <- haplodata(ACEdata)
# simulates 100 random haplotypes
y <- haplosim(100, x)
```

haplofreqs

Haplotype frequencies

Description

Compute haplotype frequencies

Usage

```r
haplofreqs(dat, firstl, lastl)
```

Arguments

- `dat` A binary matrix, rows are haplotypes and columns are binary markers
- `firstl` Position of the first locus
- `lastl` Position of the last locus

Value

A vector of haplotype frequencies

Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)
freqs <- haplofreqs(ACEdata, 17, 22)
```
HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. 2005.

Description
Generates a random sample of haplotypes, given an haplotype object created from a data set

Usage

```r
haplosim(n, hap, which.snp = NULL, seed = NULL, force.polym = TRUE, summary = TRUE)
```

Arguments

- `n`: Number of haplotypes to generate
- `hap`: Haplotype object created with `haplodata`
- `which.snp`: A vector specifying which SNPs to include
- `seed`: Seed for the random number generator
- `force.polym`: if TRUE, all loci are polymorphic
- `summary`: if TRUE, additional summary statistics are returned

Value
A list containing:

- `data`: Simulated sample
- `freqs`: Allele frequency vector
- `cor`: Correlation matrix
- `div`: Locus-specific diversity scores
- `mse.freqs`: MSE of allele frequencies
- `mse.cor`: MSE of correlations

Author(s)
Giovanni Montana

References

See Also
See also `haplodata`
Examples

Example 1
#
data(ACEdata)

create the haplotype object
x <- haplodata(ACEdata)

simulates a first sample of 100 haplotypes using all markers
y1 <- haplosim(100, x)

compares allele frequencies in real and simulated samples
plot(x$freqs, y1$freqs, title=paste("MSE:",y1$mse.freqs)); abline(a=0, b=1)

compares LD coefficients in real and simulated samples
ldplot(mergemats(x$cor, y1$cor), ld.type='r')

simulates a second sample of 1000 haplotypes using the first 20 markers only
y2 <- haplosim(1000, which.snp=seq(20), x)

Example 2
#
#
simulate a sample of 500 haplotypes based on the ACE data set
set.seed(1)
data(ACEdata)
n <- 500
x <- haplodata(ACEdata)
y <- haplosim(n, x)

compute the haplotype frequencies
an haplotype starts at markers 17 and ends at marker 22
freq1 <- haplofreqs(ACEdata, 17, 22)
freq2 <- haplofreqs(y$data, 17, 22)

extract the set of haplotypic configurations that are shared
by real and simulated data and their frequencies
commonhaps <- intersect(names(freq1),names(freq2))
cfreq1 <- freq1[commonhaps]
cfreq2 <- freq2[commonhaps]

compare real vs simulated haplotype frequencies
par(mar=c(1.1, 4.1, 4.1, 2.1), xpd=TRUE)
legend.text <- names(cfreq1)
bp <- barplot(cbind(cfreq1,cfreq2), main="Haplotype Frequencies",
 names.arg=c("Real","Simulated"), col=heat.colors(length(legend.text)))
legend(mean(range(bp)), -0.3, legend.text, xjust = 0.5,
 fill=heat.colors(length(legend.text)), horiz = TRUE)
chisq.test(x=n*cfreq2, p=cfreq1, simulate.p.value = TRUE, rescale.p = TRUE)

ldplot

ldplot

LD plot

Description

Creates a linkage disequilibrium plot from a matrix of pair-wise LD coefficients

Usage

```r
ldplot(ld.mat, ld.type, color = heat.colors(5/zero.noslash), title = NULL)
```

Arguments

- `ld.mat` A square matrix of LD coefficients
- `ld.type` A character value specifying what coefficients are used as input: either ‘r’ for correlation coefficients or ‘d’ for D/Dprime scores
- `color` A range of colors to be used for drawing. Default is `heat.colors`
- `title` Character string for the title of the plot

Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)

# LD plot of ACEdata using r^2 coefficients
ldplot(cor(ACEdata), ld.type = 'r')
```
Description

Merges two LD matrices. It can be used to compare the LD coefficients estimated in the real and simulated data sets.

Usage

mergemats(mat1, mat2)

Arguments

- `mat1`: First square matrix
- `mat2`: Second square matrix of same dimensions

Value

The resulting matrix has upper triangular matrix from `mat1` and lower triangular matrix from `mat2`

Author(s)

Giovanni Montana

References

Index

*Topic datasets
 ACEdata, 2

*Topic utilities
 allelefreqs, 2
 divlocus, 3
 haploadata, 4
 haplofreqs, 5
 haplosim, 6
 ldplot, 8
 mergemats, 9

ACEdata, 2
allelefreqs, 2

divlocus, 3

haploadata, 4, 6
haplofreqs, 5
haplosim, 4, 6

ldplot, 8
mergemats, 9