Package ‘el.convex’

February 15, 2013

Type Package

Title empirical likelihood ratio tests for means

Version 1.0

Date 2009-10-03

Author Dan Yang, Dylan Small

Maintainer Dan Yang <danyang@wharton.upenn.edu>

Description empirical likelihood ratio tests for means

License GPL (>= 2)

Depends R (>= 2.4.1)

Repository CRAN

Date/Publication 2012-10-29 08:58:37

NeedsCompilation no

R topics documented:

dataset ... 2
el.test.bfgs .. 2
el.test.damped ... 3
el.test.dfp .. 5
el.test.frpr .. 6
el.test.newton ... 7
samp ... 8
vec ... 9

Index 10

1
dataset

dataset simulated using the procedure described in the reference

Description

First column is covariates, second outcomes, third and forth instrumental variables

Usage

data(dataset)

Format

The format is: num [1:1000, 1:4] 0 1 1 0 1 1 0 0 0 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:4] "W" "Y" "" ""

References

A Study of Methods for Computing Empirical Likelihood

Examples

data(dataset)

dealer.bfgs

el.test.bfgs

Empirical likelihood ratio test for the means using BFGS method for optimization

Description

Compute the empirical likelihood ratio with the mean vector fixed at mu. The log empirical likelihood been maximized. el.test.bfgs uses BFGS method.

Usage

el.test.bfgs(x, mu, lam, maxit = 100, tol = 1e-07)

Arguments

- **x**
 - a matrix or vector containing the data, one row per observation.
- **mu**
 - a numeric vector (of length = ncol(x)) to be tested as the mean vector of x above, as H0
- **lam**
 - an optional vector of length = length(mu), the starting value of Lagrange multipliers, will use 0 if missing
- **maxit**
 - an optional integer to control iteration when solve constrained maximization
- **tol**
 - an optional real value for convergence test
el.test.damped

Details
If mu is in the interior of the convex hull of the observations x, then wts should sum to 1.

Value
-2LLR the -2 loglikelihood ratio; approximate chisq distribution under H0
Pval the observed P-value by chi-square approximation
lambda the final value of Lagrange multiplier
nits number of iteration performed
wts weights on the observations
mu the means that are achieved

Warning
el.convex has not been thoroughly tested. Please report bugs.

Author(s)
Dan Yang, Dylan Small

References
A Study of Methods for Computing Empirical Likelihood Numerical recipes in C

Examples
x <- matrix(c(rnorm(5,mean=1), rnorm(5,mean=2)), ncol=2,nrow=5)
el.test.newton(x, mu=c(1,2))
el.test.bfgs(x, mu=c(1,2))

el.test.damped \hspace{1cm} Empirical likelihood ratio test for the means using damped Newton method for optimization

Description
Compute the empirical likelihood ratio with the mean vector fixed at mu. The log empirical likelihood been maximized. El.test.damped uses damped Newton method.

Usage
el.test.damped(x, mu, lam, maxit = 200, tol = 1e-07)
el.test.damped

Arguments

- **x**: a matrix or vector containing the data, one row per observation.
- **mu**: a numeric vector (of length = ncol(x)) to be tested as the mean vector of x above, as H0
- **lam**: an optional vector of length = length(mu), the starting value of Lagrange multipliers, will use 0 if missing
- **maxit**: an optional integer to control iteration when solve constrained maximization
- **tol**: an optional real value for convergence test

Details

If mu is in the interior of the convex hull of the observations x, then wts should sum to 1

Value

- **-2LLR**: the -2 loglikelihood ratio; approximate chisq distribution under H0
- **Pval**: the observed P-value by chi-square approximation
- **lambda**: the final value of Lagrange multiplier
- **nits**: number of iteration performed
- **wts**: weights on the observations
- **mu**: the means that are achieved

Warning

el.convex has not been thoroughly tested. Please report bugs.

Author(s)

Dan Yang, Dylan Small

References

A Study of Methods for Computing Empirical Likelihood Numerical recipes in C

Examples

```r
x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50)
el.test.damped(x, mu=c(1,2))
```
el.test.dfp

Empirical likelihood ratio test for the means using DFP method for optimization

Description

Compute the empirical likelihood ratio with the mean vector fixed at `mu`. The log empirical likelihood been maximized `el.test.dfp` uses DFP method

Usage

```r
el.test.dfp(x, mu, lam, maxit = 100, tol = 1e-07)
```

Arguments

- `x` a matrix or vector containing the data, one row per observation.
- `mu` a numeric vector (of length = `ncol(x)`) to be tested as the mean vector of `x` above, as H0
- `lam` an optional vector of length = `length(mu)`, the starting value of Lagrange multipliers, will use 0 if missing
- `maxit` an optional integer to control iteration when solve constrained maximization
- `tol` an optional real value for convergence test

Details

If `mu` is in the interior of the convex hull of the observations `x`, then `wts` should sum to 1

Value

- `~2LLR` the -2 loglikelihood ratio; approximate chisq distribution under H0
- `Pval` the observed P-value by chi-square approximation
- `lambda` the final value of Lagrange multiplier
- `nits` number of iteration performed
- `wts` weights on the observations
- `mu` the means that are achieved

Warning

`el.convex` has not been thoroughly tested. Please report bugs.

Author(s)

Dan Yang, Dylan Small
References

A Study of Methods for Computing Empirical Likelihood Numerical recipes in C

Examples

```r
x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50)
el.test.dfp(x, mu=c(1,2))
```

el.test.frpr

Empirical likelihood ratio test for the means using FRPR method for optimization

Description

Compute the empirical likelihood ratio with the mean vector fixed at mu. The log empirical likelihood been maximized. el.test.frpr uses conjugate gradient method.

Usage

```r
el.test.frpr(x, mu, lam, maxit = 100, tol = 1e-07)
```

Arguments

- `x`: a matrix or vector containing the data, one row per observation.
- `mu`: a numeric vector (of length = ncol(x)) to be tested as the mean vector of x above, as H0
- `lam`: an optional vector of length = length(mu), the starting value of Lagrange multipliers, will use 0 if missing
- `maxit`: an optional integer to control iteration when solve constrained maximization
- `tol`: an optional real value for convergence test

Details

If mu is in the interior of the convex hull of the observations x, then wts should sum to 1

Value

- `~2LLR`: the -2 loglikelihood ratio; approximate chisq distribution under H0
- `Pval`: the observed P-value by chi-square approximation
- `lambda`: the final value of Lagrange multiplier
- `nits`: number of iteration performed
- `wts`: weights on the observations
- `mu`: the means that are achieved
el.test.newton

Warning
el.convex has not been thoroughly tested. Please report bugs.

Author(s)
Dan Yang, Dylan Small

References
A Study of Methods for Computing Empirical Likelihood Numerical recipes in C

Examples
x <- matrix(c(rnorm(50,mean=1), rnorm(50,mean=2)), ncol=2,nrow=50)
el.test.frpr(x, mu=c(1,2))

el.test.newton Empirical likelihood ratio test for the means using Newton method for optimization

Description
Compute the empirical likelihood ratio with the mean vector fixed at mu. The log empirical likelihood been maximized. el.test.newton uses simple Newton method for optimization.

Usage
el.test.newton(x, mu, lam, maxit = 25, tol = 1e-07)

Arguments
x a matrix or vector containing the data, one row per observation.
mu a numeric vector (of length = ncol(x)) to be tested as the mean vector of x above, as H0
lam an optional vector of length = length(mu), the starting value of Lagrange multipliers, will use 0 if missing
maxit an optional integer to control iteration when solve constrained maximization
tol an optional real value for convergence test

Details
If mu is in the interior of the convex hull of the observations x, then wts should sum to 1
Value
- **-2LR** the loglikelihood ratio; approximate chi-square distribution under H0
- **Pval** the observed P-value by chi-square approximation
- **lambda** the final value of Lagrange multiplier
- **nits** number of iteration performed
- **wts** weights on the observations
- **mu** the means that are achieved

Warning
el.convex has not been thoroughly tested. Please report bugs.

Author(s)
Dan Yang, Dylan Small

References
A Study of Methods for Computing Empirical Likelihood Numerical recipes in C

Examples
```r
x <- matrix(c(rnorm(5, mean=1), rnorm(5, mean=2)), ncol=2)
el.test.newton(x, mu=c(1,2))
```

samp

sample from bootstrap

Description
sample that is used in order to get the plot in the references

Usage
data(samp)

Format
The format is: num [1:1000] 765 588 840 695 522 961 796 546 547 721 ...

References
A Study of Methods for Computing Empirical Likelihood

Examples
data(samp)
vec

<table>
<thead>
<tr>
<th>vec</th>
<th>four constants</th>
</tr>
</thead>
</table>

Description

four constants that are used in order to get the plot in the reference

Usage

data(vec)

Format

The format is: Named num [1:4] 11.8699 11.8957 4.184 -0.0348 - attr(*, "names")= chr [1:4] "a1.temp" "a2.temp" "b1.temp" "d"

References

A Study of Methods for Computing Empirical Likelihood

Examples

data(vec)
Index

*Topic datasets
 dataset, 2
 samp, 8
 vec, 9

*Topic nonparametric
 el.test.bfgs, 2
 el.test.damped, 3
 el.test.dfp, 5
 el.test.frpr, 6
 el.test.newton, 7

dataset, 2

el.test.bfgs, 2
el.test.damped, 3
el.test.dfp, 5
el.test.frpr, 6
el.test.newton, 7

samp, 8

vec, 9