Package ‘ccgarch’

February 15, 2013

Version 0.2.0-2
Date 2013-01-14
Title Conditional Correlation GARCH models
Author Tomoaki Nakatani <naktom2@gmail.com>
Maintainer Tomoaki Nakatani <naktom2@gmail.com>
Depends R (>= 2.15.2)
Description Functions for estimating and simulating the family of the CC-GARCH models.
License GPL (>= 2)
Repository CRAN
Date/Publication 2013-01-14 13:53:56
NeedsCompilation yes

R topics documented:

 dcc.estimation .. 2
dcc.sim ... 3
eccc.estimation ... 5
eccc.sim ... 7
fourth ... 8
hh.test .. 9
jb.test ... 10
ljung.box.test .. 11
nt.test ... 12
rob.kr ... 12
rob.sk .. 13
stationarity ... 14
stcc.sim .. 15

Index 17
Estimating an (E)DCC-GARCH model

dcc.estimation

Description

This function carries out the two step estimation of the (E)DCC-GARCH model and returns estimates, standardised residuals, the estimated conditional variances, and the dynamic conditional correlations.

Usage

dcc.estimation(inia, iniA, iniB, ini.dcc, dvar, model, method="BFGS", gradient=1, message=1)

Arguments

- `inia`: a vector of initial values for the constants in the GARCH equation. `length(inia)=N`
- `iniA`: a matrix of initial values for the ARCH parameter matrix. `(N \times N)`
- `iniB`: a matrix of initial values for the GARCH parameter matrix. `(N \times N)`
- `ini.dcc`: a vector of initial values for the DCC parameters. `(2 \times 1)`
- `dvar`: a matrix of the data. `(T \times N)`
- `model`: a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model.
- `method`: a character string specifying the optimisation method in `optim`. There are three choices, namely, Nelder-Mead, BFGS (default) and CG.
- `gradient`: a switch variable that determines the optimisation algorithm in the second stage optimisation. If `gradient=0` Nelder-Mead is invoked. Otherwise BFGS is used (default).
- `message`: a switch variable to turn off the display of the message when the estimation is completed. If `message=0`, the message is suppressed. Otherwise, the message is displayed (default).

Value

- a list with components:
 - `out`: the parameter estimates and their standard errors
 - `loglik`: the value of the log-likelihood at the estimates
 - `h`: a matrix of the estimated conditional variances. `(T \times N)`
 - `DCC`: a matrix of the estimated dynamic conditional correlations. `(T \times N^2)`
 - `std.resid`: a matrix of the standardised residuals. `(T \times N)`. See Note.
 - `first`: the results of the first stage estimation
 - `second`: the results of the second stage estimation
Note

The standardised residuals are calculated by dividing the original series dvar by the estimated conditional standard deviations sqrt(h). See Engle (2002), in particular the equations (2) and (14), for details.

The details of the first and second stage estimation are also saved in first and second, respectively.

The switch variable simulation is useful when one uses dcc.estimation for simulation. It suppresses the display of the completion message.

References

See Also

dcc.sim

Examples

Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2, 0.3, 0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
dcc.para <- c(0.01, 0.98)
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

Not run:
Estimating a DCC-GARCH(1,1) model
dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B, ini.dcc=dcc.para,
dvar=dcc.data$eps, model="diagonal")

Parameter estimates and their robust standard errors
dcc.results$out

End(Not run)
Description

This function simulates data either from the original DCC-GARCH by Engle (2002) or from the Extended DCC-GARCH that has non-zero off-diagonal entries in the parameter matrices in the GARCH equation, with multivariate normal or student’s t distributions.

The dimension (N) is determined by the number of elements in the a vector.

Usage

dcc.sim(nobs, a, A, B, R, dcc.para, d.f=Inf, cut=1000, model)

Arguments

- **nobs**: a number of observations to be simulated (T)
- **a**: a vector of constants in the vector GARCH equation ($N \times 1$)
- **A**: an ARCH parameter matrix in the vector GARCH equation ($N \times N$)
- **B**: a GARCH parameter matrix in the vector GARCH equation ($N \times N$)
- **R**: an unconditional correlation matrix ($N \times N$)
- **dcc.para**: a vector of the DCC parameters (2×1)
- **d.f**: the degrees of freedom parameter for the t-distribution
- **cut**: the number of observations to be thrown away for removing initial effects of simulation
- **model**: a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model

Value

A list with components:

- **z**: a matrix of random draws from $N(0, I)$. ($T \times N$)
- **std.z**: a matrix of the standardised residuals. $std.z_t \sim N(0, R_t)$ where R_t is the DCC matrix at t. If d.f is set to a finite positive real number, $z_t \sim t_{d.f}(0, R_t)$ ($T \times N$)
- **dcc**: a matrix of the simulated dynamic conditional correlations ($T \times N^2$)
- **h**: a matrix of the simulated conditional variances ($T \times N$)
- **eps**: a matrix of the simulated time series with DCC-GARCH process ($T \times N$)

Note

When d.f=Inf, the innovations (the standardised residuals) follow the standard normal distribution. Otherwise, they follow a student’s t-distribution with d.f degrees of freedom.

When model="diagonal", only the diagonal entries in A and B are used. If the ARCH and GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.
References

See Also

`stcc.sim, eccc.sim`

Examples

```r
# Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000; nu <- 8
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2, 0.3, 0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0, 3, 3), 3, 3)
dcc.para <- c(0.01, 0.98)

## Not run:
# for normally distributed innovations
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")

# for t distributed innovations
dcc.data.t <- dcc.sim(nobs, a, A, B, uncR, dcc.para, d.f=nu, model="diagonal")

## End(Not run)
```

eccc.estimation

Estimating an (E)CCC-GARCH model

Description

This function estimates an (E)CCC-GARCH(1,1) model and returns estimates, estimated volatility and various diagnostic statistics.

Usage

```r
eccc.estimation(a, A, B, R, dvar, model, method="BFGS")
```
Arguments

- **a** initial values for constants \((N \times 1)\)
- **A** initial values for an ARCH parameter matrix \((N \times N)\)
- **B** initial values for a GARCH parameter matrix \((N \times N)\)
- **R** initial values a constant conditional correlation matrix \((N \times N)\)
- **dvar** a matrix of data used for (E)CCC-GARCH estimation \((T \times N)\)
- **model** a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model
- **method** a character string specifying the optimisation method in optim. There are three choices, namely, Nelder-Mead, BFGS (default) and CG.

Value

A list with components:

- **out** a \((4 \times npar)\) matrix. The estimates are contained in the first row. The remaining rows report standard errors based on three different methods of estimating the asymptotic covariance matrix
- **h** the estimated conditional variances \((T \times N)\)
- **std.resid** a matrix of the standardised residuals \((T \times N)\). See Note.
- **opt** the detailed results of the optimisation
- **para.mat** vectorised parameter estimates

Note

The standardised residuals are calculated through dividing the original series by the estimated conditional standard deviations. See, for instance, p.303 of Bollerslev (1990) for details.

References

Simulating an (E)CCC-GARCH(1,1) process

Description

This function simulates data either from the original CCC-GARCH by Bollerslev (1990) or from the Extended CCC-GARCH that has non-zero off-diagonal entries in the parameter matrices in the GARCH equation. The innovations (the standardised residuals) can be either a normal or student’s t distribution.

The dimension \(N \) is determined by the number of elements in the \(a \) vector.

Usage

\[
eccc.sim(nobs, a, A, B, R, d.f=Inf, cut=1000, model)
\]

Arguments

- **nobs**: a number of observations to be simulated \((T) \)
- **a**: a vector of constants in the GARCH equation \((N \times 1) \)
- **A**: an ARCH parameter matrix in the GARCH equation. \(A \) can be a diagonal matrix for the original CCC-GARCH model or a full matrix for the extended model \((N \times N) \)
- **B**: a GARCH parameter matrix in the GARCH equation. \(B \) can be a diagonal matrix for the original CCC-GARCH model or a full matrix for the extended model \((N \times N) \)
- **R**: a constant conditional correlation matrix \((N \times N) \)
- **d.f**: the degrees of freedom parameter for the t-distribution
- **cut**: the number of observations to be thrown away for removing initial effects of simulation
- **model**: a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model

Value

A list with components:

- **h**: a matrix of the simulated conditional variances \((T \times N) \)
- **eps**: a matrix of the simulated time series with (E)CCC-GARCH process \((T \times N) \)

Note

When \(d.f=Inf \), the innovations (the standardised residuals) follow the standard normal distribution. Otherwise, they follow a student’s t-distribution with \(d.f \) degrees of freedom equal.

When \(model="diagonal" \), only the diagonal entries in \(A \) and \(B \) are used. If the ARCH and GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.
References

See Also

dcc.sim, stcc.sim

Examples

```r
# Simulating data from the original CCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000; nu <- 10
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2, 0.3, 0.15))
B <- diag(c(0.79, 0.6, 0.8))
R <- matrix(c(1, 0.4, 0.3, 0.4, 1, 0.12, 0.3, 0.12, 1), 3, 3)
## Not run:
ccc.data <- eccc.sim(nobs, a, A, B, R, model="diagonal")
ccc.data.t <- eccc.sim(nobs, a, A, B, R, d.f=nu, model="diagonal")
## End(Not run)
```

fourth

Fourth-order moment condition for the vector GARCH equation

Description

This function computes the fourth-order moment condition for the vector GARCH equation in the (E)CCC-GARCH models.

Usage

`fourth(A, B, R)`

Arguments

- `A` an ARCH parameter matrix ($N \times N$)
- `B` a GARCH parameter matrix ($N \times N$)
- `R` a constant conditional correlation matrix ($N \times N$)
hh.test

Value

a scalar. If strictly less than unity, the condition is satisfied.

References

See Also

stationarity

Description

This function computes the test statistic and the associated p-value of the test for causality in conditional variance in the CC-GARCH models.

Usage

```r
hh.test(dvar)
```

Arguments

dvar \((T \times N)\)

Value

A vector containing the test statistic and the associated p-value

References

See Also

nt.test
The Lomnicki-Jarque-Bera Test of normality (JB test)

Description

This function performs the Lomnicki-Jarque-Bera Test of normality and returns test statistics and associated p-values.

Usage

\[\text{jb.test}(x) \]

Arguments

\(x \) a vector or matrix of variables to be tested

Value

Vector of test statistics and p-value

References

See Also

\texttt{rob.sk}, \texttt{rob.kr}, \texttt{ljung.box.test}

Examples

\# for a vector
\x <- rnorm(1000)
\texttt{jb.test(x)}

\# for a matrix
\texttt{X <- matrix(rnorm(10000), 5000, 2)}
\texttt{jb.test(X)}
Description

This function performs the Ljung-Box Test for a univariate time series.

Usage

ljung.box.test(x)

Arguments

x a vector of variables to be tested

Value

LB test statistics and associated p-values for lags 5, 10,..., 50.

Note

Argument x must be a vector. When x is squared residuals, the test is equivalent to the McLeord and Li (1983) test.

References

See Also

rob.sk, rob.kr, jb.test

Examples

x <- rnorm(1000)
ljung.box.test(x) # returns the LB Test statistic
ljung.box.test(x^2) # returns the Mcleord-Li Test for no-ARCH effect
nt.test

Carrying out the test of Nakatani and Ter"asvirta

Description

This function computes the test statistic and the associated p-value of the test for causality in conditional variance in the CC-GARCH models.

Usage

```r
nt.test(dvar)
```

Arguments

- `dvar`

 $(T \times N)$

Value

A matrix containing the test statistics of the standard (non-robust) test and the robust version, and the associated p-values

References

See Also

- `hh.test`

rob.kr

Computing standard and robustified excess kurtosis

Description

This function computes standard and robustified excess kurtosis of a vector or matrix of variables.

Usage

```r
rob.kr(x)
```

Arguments

- `x`

 vector or matrix of variables
Value

Vector of excess kurtosis and robustified excess kurtosis

References

See Also

rob.sk, ljung.box.test, jb.test

Examples

```r
x <- matrix(rnorm(1000), 100, 10)
rob.kr(x)
```

rob.sk

Computing standard and robustified skewness

Description

This function computes standard and robustified skewness measures of a vector or matrix of variables.

Usage

```r
rob.sk(x)
```

Arguments

- `x` a vector or matrix of variables

Value

Vector of skewness and robustified skewness

References

See Also

rob.kr, ljung.box.test, jb.test

Examples

```r
x <- matrix(rnorm(1000), 100, 10)
rob.sk(x)
```
stationarity

The stationarity condition in Extended CC-GARCH models

Description

A utility function that checks if the two parameter matrices in a vector GARCH model satisfy the stationarity condition.

Usage

```
stationarity(A,B)
```

Arguments

- `A`
an ARCH parameter matrix in the vector GARCH equation ($N \times N$)
- `B`
a GARCH parameter matrix in the vector GARCH equation ($N \times N$)

Value

a scalar. If strictly less than unity, the condition is satisfied.

References

See Also

fourth
stcc.sim

Simulating Data from an STCC-GARCH$(1,1)$ process

Description

This function simulates data either from the original STCC-GARCH by Silvennoinen and Ter"asvirta (2005) or from the Extended STCC-GARCH that has non-zero off-diagonal entries in the parameter matrices in the GARCH equation, with multivariate normal or student’s t distribution.

The dimension (N) is determined by the number of elements in the a vector.

Usage

\[
stcc.sim(nobs, a, A, B, R1, R2, tr.par, st.par, d.f=Inf, cut=1000, model)
\]

Arguments

- **nobs**: a number of observations to be simulated (T)
- **a**: a vector of constants in the vector GARCH equation ($N \times 1$)
- **A**: an ARCH parameter matrix in the vector GARCH equation. ($N \times N$)
- **B**: a GARCH parameter matrix in the vector GARCH equation. ($N \times N$)
- **R1**: a conditional correlation matrix in regime 1 ($N \times N$)
- **R2**: a conditional correlation matrix in regime 2 ($N \times N$)
- **tr.par**: a vector of scale and location parameters in the transition function (2×1)
- **st.par**: a vector of parameters for the GARCH(1,1) transition variable (3×1)
- **d.f**: the degrees of freedom parameter for the t-distribution
- **cut**: the number of observations to be thrown away for removing initial effects of simulation
- **model**: a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model

Value

A list with components:

- **h**: a matrix of conditional variances ($T \times N$)
- **eps**: a matrix of time series with DCC-GARCH process ($T \times N$)
- **tr.var**: a vector of the transition variable
- **st**: a vector of time series of the transition function
- **vecR**: a $(T \times N^2)$ matrix of Smooth Transition Conditional Correlations
Note

When \(d.f=\infty \), the innovations (the standardised residuals) follow the standard normal distribution. Otherwise, they follow a student’s \(t \)-distribution with \(d.f \) degrees of freedom equal.

When model="diagonal", only the diagonal entries in \(A \) and \(B \) are used. If the ARCH and GARCH matrices do not satisfy the stationarity condition, the simulation is terminated.

References

See Also

dcc.sim, eccc.sim

Examples

```r
# Simulating data from the original STCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2, 0.3, 0.15))
B <- diag(c(0.79, 0.6, 0.8))
# Conditional Correlation Matrix for regime 1
R1 <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
# Conditional Correlation Matrix for regime 2
R2 <- matrix(c(1.0, 0.01, -0.3, 0.01, 1.0, 0.8, -0.3, 0.8, 1.0),3,3)
# a parameter vector for the scale and location parameters
# in the logistic function
tr.para <- c(5,0)
# a parameter vector for a GARCH(1,1) transition variable
st.para <- c(0.02,0.04, 0.95)
u <- 15
## Not run:
stcc.data <- stcc.sim(nobs, a, A, B, R1, R2,
                      tr.par=tr.para, st.par=st.para, model="diagonal")
stcc.data.t. <- stcc.sim(nobs, a, A, B, R1, R2,
                         tr.par=tr.para, st.par=st.para, d.f=u, model="diagonal")
## End(Not run)
```
Index

*Topic algebra
 fourth, 8

*Topic datagen
 dcc.sim, 3
 eccc.sim, 7
 stcc.sim, 15

*Topic htest
 jb.test, 10
 ljung.box.test, 11
 rob.kr, 12
 rob.sk, 13

*Topic models
 dcc.estimation, 2
 dcc.sim, 3
 eccc.estimation, 5
 eccc.sim, 7
 hh.test, 9
 nt.test, 12
 stcc.sim, 15

*Topic multivariate
 dcc.estimation, 2
 dcc.sim, 3
 eccc.estimation, 5
 eccc.sim, 7
 fourth, 8
 hh.test, 9
 nt.test, 12
 stationarity, 14
 stcc.sim, 15

*Topic optimize
 dcc.estimation, 2
 eccc.estimation, 5

*Topic ts
 dcc.estimation, 2
 dcc.sim, 3
 eccc.estimation, 5
 eccc.sim, 7
 hh.test, 9
 jb.test, 10
 ljung.box.test, 11
 nt.test, 12
 rob.kr, 12
 rob.sk, 13
 stationarity, 14
 stcc.sim, 15
 dcc.estimation, 2
 dcc.sim, 3, 8, 16
 eccc.estimation, 5
 eccc.sim, 5, 7, 16
 fourth, 8, 14
 hh.test, 9, 12
 jb.test, 10, 11, 13
 ljung.box.test, 10, 11, 13
 nt.test, 9, 12
 rob.kr, 10, 11, 12, 13
 rob.sk, 10, 11, 13, 13
 stationarity, 9, 14
 stcc.sim, 5, 8, 15