Package ‘SensoMineR’

February 15, 2013

Version 1.15
Date 2012-27-06
Title Sensory data analysis with R
Author Francois Husson, Sebastien Le, Marine Cadoret
Maintainer Francois Husson <husson@agrocampus-ouest.fr>
Depends FactoMineR (>= 1.19)
Description an R package for analysing sensory data
License GPL (>= 2)
URL http://sensominer.free.fr
Encoding latin1
Repository CRAN
Date/Publication 2012-06-27 15:33:43
NeedsCompilation no

R topics documented:

ardi ... 3
averagetab 4
e barrow .. 6
boot ... 7
boxprod .. 9
cards ... 10
carto ... 11
cartoconsumer ... 13
chocolates ... 15
cocktail .. 15
coltable .. 16
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>compo.cocktail</td>
</tr>
<tr>
<td>construct.axes</td>
</tr>
<tr>
<td>cpa</td>
</tr>
<tr>
<td>decat</td>
</tr>
<tr>
<td>fahst</td>
</tr>
<tr>
<td>fasnt</td>
</tr>
<tr>
<td>fast</td>
</tr>
<tr>
<td>fcp</td>
</tr>
<tr>
<td>graphinter</td>
</tr>
<tr>
<td>hedo.cocktail</td>
</tr>
<tr>
<td>hedochoc</td>
</tr>
<tr>
<td>histprod</td>
</tr>
<tr>
<td>hsortplot</td>
</tr>
<tr>
<td>indscal</td>
</tr>
<tr>
<td>interact</td>
</tr>
<tr>
<td>magicsort</td>
</tr>
<tr>
<td>nappeplot</td>
</tr>
<tr>
<td>nappesortplot</td>
</tr>
<tr>
<td>napping</td>
</tr>
<tr>
<td>napping.don</td>
</tr>
<tr>
<td>napping.words</td>
</tr>
<tr>
<td>optimaldesign</td>
</tr>
<tr>
<td>paneliperf</td>
</tr>
<tr>
<td>panellipse</td>
</tr>
<tr>
<td>panellipse.session</td>
</tr>
<tr>
<td>panelmatch</td>
</tr>
<tr>
<td>panelperf</td>
</tr>
<tr>
<td>perfume</td>
</tr>
<tr>
<td>perfume_fcp</td>
</tr>
<tr>
<td>plot.fahst</td>
</tr>
<tr>
<td>plot.fasnt</td>
</tr>
<tr>
<td>plot.fast</td>
</tr>
<tr>
<td>plotpanelist</td>
</tr>
<tr>
<td>pmfa</td>
</tr>
<tr>
<td>print.fahst</td>
</tr>
<tr>
<td>print.fasnt</td>
</tr>
<tr>
<td>print.fast</td>
</tr>
<tr>
<td>scalebypanelist</td>
</tr>
<tr>
<td>search.desc</td>
</tr>
<tr>
<td>senso.cocktail</td>
</tr>
<tr>
<td>sensochoc</td>
</tr>
<tr>
<td>sensopanels</td>
</tr>
<tr>
<td>smoothies</td>
</tr>
<tr>
<td>triangle.design</td>
</tr>
<tr>
<td>triangle.pair.test</td>
</tr>
<tr>
<td>triangle.test</td>
</tr>
</tbody>
</table>

Index 75
ARDI

Automatic Research of DIvergences between scores

Description

Spot the most singular or particular data with respect to all descriptors and to two qualitative variables and all their possible categories combinations.
Computes the highest differences between all the categories of the variables product, panelist and all their possible combinations, with respect to a set of quantitative variables (the sensory descriptors).

Usage

ardi(donnee, col.p, col.j, firstvar, lastvar = ncol(donnee),
 nbval = 10, center = TRUE, scale = FALSE)

Arguments

donnee a data frame made up of at least two qualitative variables (product, panelist) and a set of quantitative variables (sensory descriptors)
col.p the position of the product variable
col.j the position of the panelist variable
firstvar the position of the first sensory descriptor
lastvar the position of the last sensory descriptor (by default the last column of donnee)
nbval the number of highest divergences to be displayed
center by default, data are mean centered by panelist
scale by default, data are not scaled by panelist

Details

Step 1 For each quantitative variable, means by all the possible combinations (panelist,product) are computed.
Step 2 Then, data are mean centered and scaled to unit variance by descriptor and the divergence corresponds to the absolute value of the entries.
Step 3 Means on divergences are computed by products or by panelists and then sorted.

Value

A list containing the following elements:
tab a data frame (descriptors are mean centered per panelist and scaled to unit variance)
panelist a data frame, by default the 10 highest divergences between panelists according to the sensory descriptors
product a data frame, by default the 10 highest divergences between products according to the sensory descriptors
combination a data frame, by default the 10 highest divergences between panelists and products according to the sensory descriptors
averagetablen

Author(s)
François Husson, Sébastien Lê

See Also
decat

Examples

```r
## Not run:
data(chocolates)
ardi(sensochoc, col.p = 4, col.j = 1, firstvar = 5)

## End(Not run)
```

Description

Returns the (products, descriptors) matrix with entries the means over panelists and sessions. Computes analyses of variance automatically for a given model and a set of quantitative variables. Returns a data matrix where each row is associated with each category of a given categorical variable (in most cases, the categorical variable is the product variable), each column is associated with a quantitative variable, and each cell is the corresponding adjusted mean or mean. Computes the average data table with respect to a categorical variable and a set of quantitative variables.

Usage

```r
averagetablen(donnee, formul, subset = NULL, method = "coeff",
               firstvar, lastvar = ncol(donnee), file = NULL)
```

Arguments

- **donnee**: a data frame made up of at least two qualitative variables (product, panelist) and a set of quantitative variables (sensory descriptors)
- **formul**: the model with respect to which the factor levels of the categorical variable of interest are calculated
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process
- **method**: two possibilities, "coeff" (by default) or "mean"
- **firstvar**: the position of the first endogenous variable
- **lastvar**: the position of the last endogenous variable (by default the last column of donnee)
- **file**: the name of the output file (by default, NULL and results are not in a file)
Details

The `formul` parameter can be filled in for a given analysis of variance model. The `formul` parameter must begin with the categorical variable of interest (generally the `product` variable) followed by the different other factors (and eventually their interactions) of interest. Classically, one can use `formul = "~Product+Panelist+Product:Panelist"`. In practice and in our type of applications, this function is very useful to obtain a data matrix in which rows represent products and columns represent sensory descriptors.

If "mean" is assigned to the `method` parameter, then the `formul` parameter can be restricted to the sole variable of interest (generally the `product` variable).

If data are balanced, the two options "mean" and "coeff" give the same results.

Value

Return a matrix of dimension \((p,q)\), where \(p\) is the number of categories of the qualitative variable of interest (in most cases, \(p\) is the number of products) and \(q\) is the number of (sensory) descriptors. If "coeff" is assigned to the `method` parameter then the function `averagetable` returns the matrix of the adjusted means; if "mean" is assigned to the `method` parameter then the function `averagetable` returns the matrix of the means per category.

Author(s)

François Husson <François.Husson@agrocampus-ouest.fr>

References

See Also

`aov`

Examples

data(chocolates)
resaverage<-averagetable(sensochoc, formul = "~Product+Panelist",
 firstvar = 5)
colttable(magicsort(resaverage), level.upper = 6,level.lower = 4,
 main.title = "Average by chocolate")
res.pca = PCA(resaverage, scale.unit = TRUE)
barrow

Barplot per row with respect to a set of quantitative variables

Description

Returns as many barplots as there are rows in a matrix. The barplots are automatically generated for all the quantitative variables.

Usage

```r
barrow(donnee, numr = 2, numc = 2, numchar = 8, color = "lightblue",
       title = NULL)
```

Arguments

- `donnee`: a data frame of dimension \(p \times q \), where \(p \) is the number of products and \(q \) is the number of sensory descriptors for instance
- `numr`: the number of barplots to be displayed per row (by default 2)
- `numc`: the number of barplots to be displayed per column (by default 2)
- `numchar`: the number of character used to write the boxplot labels (by default 8)
- `color`: the color of the barplots (by default "lightblue")
- `title`: the title used in the graphs

Details

Missing values are ignored when forming barplots.

Author(s)

Sébastien Lê <Sebastien.Le@agrocampus-rennes.fr>

References

See Also

plot
Examples

data(chocolates)
resdecat<-decat(sensochoc, formul = "~Product+Panelist", firstvar = 5,
 graph = FALSE)
Not run:
barrow(resdecat$tabT)
barrow(resdecat$coeff, color = "orange")
End(Not run)

Description

Simulate virtual panels for the sorting task, the napping, the sorting napping, the free choice profiling, the hierarchical sorting task

Usage

boot(X, method = "sorting", axes = 1:2, scale = TRUE, ncp = NULL, group = NULL,
 nbsim = 200, level.conf = 0.95, nbchoix = NULL, color = NULL, cex = 0.8,
 title = NULL, new.plot = TRUE)

Arguments

- **X** data.frame
- **method** String with the method to use. The argument can be "sorting" (the default for sorting task data), "napping" (for napping data), "sortnapping" (for sorted napping), "freechoice" (for free choice profiling), "hsort" (for hierarchical sorting task data).
- **axes** a length 2 vector specifying the components to plot
- **scale** boolean, used when method="freechoice"; if TRUE, the variables are scaled
- **ncp** number of components used to procrustes the virtual subspaces on the true subspace; by default NULL and the number of components is estimated
- **group** a list indicating the number of variables in each group; used when method="freechoice" or method="hsort"
- **nbsim** the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
- **level.conf** confidence level used to construct the ellipses. By default, 0.95
- **nbchoix** the number of panelists forming a virtual panel, by default the number of panelists in the original panel
- **color** a vector with the colors used; by default there are 35 colors defined
- **cex** cf. function `par` in the `graphics` package
title string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
new.plot boolean, if TRUE, a new graphical device is created

Details
Calculate virtual panels by bootstrap of the panelists. For each virtual panel, calculate the mean configuration and procrustes this configuration on the true configuration obtained from the true panel.

Value
Returns a list with estim.ncp which corresponds to the output of the estim_ncp function (function which estimates the number of components) and the simul object which can be used with the plotellipse function.

Author(s)
Marine Cadoret and François Husson

Examples
Not run:
######## Napping example
data(napping)
res <- boot(napping.don, method="napping")

######### Sorting task example
data(perfume)
res <- boot(perfume, method="sorting")

######### Sorted task napping example
data(smoothies)
res <- boot(smoothies, method="sortnapping")

######## Hierarchical sorting task example
data(cards)
 group.cards <- c(2,3,3,2,4,2,3,2,1,3,2,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
res <- boot(cards, method="hsort", group=group.cards)

######### Free choice profiling example
data(perfume_fcp)
res <- boot(perfume_fcp, method="freechoice", group = c(12,7,7,7,6,8))

End(Not run)
Boxplot per category with respect to a categorical variable and a set of quantitative variables

Description

Returns as many boxplots as there are categories for a given categorical variable of interest (in most cases, the product variable). The boxplots are automatically generated for all the quantitative variables (in our type of applications, variables are often sensory descriptors).

Usage

```r
boxprod(donnee, col.p, firstvar, lastvar = ncol(donnee),
        numr = 2, numc = 2)
```

Arguments

donnee a data frame
col.p the position of the categorical variable of interest
firstvar the position of the first endogenous variable
lastvar the position of the last endogenous variable (by default the last column of donnee)
umr the number of boxplots per row (by default 2)
numc the number of boxplots per column (by default 2)

Details

Missing values are ignored when forming boxplots.

Author(s)

François Husson <François.Husson@agrocampus-ouest.fr>
Sébastien Lê <Sebastien.Le@agrocampus-ouest.fr>

References

See Also

`boxplot` which does the computation, `bxp` for the plotting and more examples; and `stripchart` for an alternative (with small data sets).
Examples

```r
data(chocolates)
boxprod(sensochoc, col.p = 4, firstvar = 5, numr = 2, numc = 2)
```

cards
Cards

Description

The data used here refer to 16 cards (images) on which 30 children performed a hierarchical sorting task.

Usage

```r
data(cards)
```

Format

A data frame with 16 rows (the number of cards) and 81 columns (the total number of levels provided by all children). For each child, we have several qualitative variables corresponding to nested partitions: a partition corresponds to a level provided by the child. The columns are grouped by child.

Source

Département de mathématiques appliquées, AGROCAPMUS OUEST Centre de Rennes

Examples

```r
## Not run:
data(cards)
## Example of FAHST
group.cards<-c(2,3,3,2,2,4,2,3,2,1,3,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
res.fahst<-fahst(cards,group=group.cards)
## End(Not run)
```
carto

Preference Mapping Techniques

Description

Performs preference mapping techniques based on multidimensional exploratory data analysis.

Usage

carto(Mat, MatH,
 level = 0, regmod = 1, coord = c(1, 2), asp = 1,
 cex = 1.3, col = "steelblue4", font = 2, clabel = 0.8,
 label.j = FALSE, resolution = 200, nb.clusters = 0,
 graph.tree=TRUE,graph.corr=TRUE,graph.carto=TRUE,
 main=NULL,col.min=7.5,col.max=0)

Arguments

Mat | a data frame corresponding to the axes of the map
MatH | a data frame in which each row represent a product and each column represent the hedonic scores of a given consumer for the products
level | the number of standard deviations used in the calculation of the preference response surface for all the consumers
regmod | the type of regression model used in the calculation of the preference response surface for all the consumers. regmod = 1: quadratic model, regmod = 2: vector model, regmod = 3: circular model, regmod = 4: elliptical model
coord | a vector of length 2, the rank of the axis used to display the results if "manual" is not assigned to the option parameter
asp | if 1 is assigned to that parameter, the graphic displays are output in an orthonormal coordinate system
cex | cf. function par in the graphics package
col | cf. function par in the graphics package
font | cf. function par in the graphics package
clabel | cf. the ade4 package
label.j | boolean, if T then the labels of the panelists who gave the hedonic scores are displayed
resolution | resolution of the map
nb.clusters | number of clusters to use (by default, 0 and the optimal number of clusters is calculated
graph.tree | boolean, if TRUE plots the tree in 2 dimensions
graph.corr | boolean, if TRUE plots the variables factor map
graph.carto | boolean, if TRUE plots the preference map
main
 an overall title for the plot
col.min
 define the color which match to the low levels of preference
col.max
 define the color which match to the high levels of preference

Details

The preference mapping methods are commonly used in the fields of market research and research and development to explore and understand the structure and tendencies of consumer preferences, to link consumer preference information to other data and to predict the behavior of consumers in terms of acceptance of a given product.

This function refers to the method introduced by M. Danzart. A response surface is computed per consumer; then according to certain threshold preference zones are delimited and finally superimposed.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>
Sebastien Le <Sebastien.Le@agrocampus-ouest.fr>

References

See Also

MFA, GPA

Examples

```r
## Not run:  
## Example 1: carto for the sensory descriptors
data(cocktail)
res.pca <- PCA(senso.cocktail)
res.carto <- carto(res.pca$ind$coord[,1:2], hedo.cocktail)

## Example 2
data(cocktail)
res.mfa <- MFA(cbind.data.frame(senso.cocktail,compo.cocktail), 
  group=c(ncol(senso.cocktail),ncol(compo.cocktail)), 
  name.group=c("senso","compo"))
res.carto <- carto(res.mfa$ind$coord[,1:2], hedo.cocktail)

## End(Not run)
```
Description

Performs preference mapping techniques based on multidimensional exploratory data analysis and segmentation of consumers.

Usage

cartoconsumer(res, data.pref, nb.clust=0, seuil=0.8, consol=TRUE, ncp=5, scale.conso=TRUE, graph.carto=TRUE, graph.hcpc=FALSE, graph.group=FALSE, col.min=7.5, col.max=0, contrast=0.2, level=0, asp=0, lwd=2)

Arguments

res the result of a factor analysis
data.pref a data frame in which each row represent a product and each column represent the hedonic scores of a given consumer for the products
nb.clust an integer. If 0, the tree is cut at the level the user clicks on. If -1, the tree is automatically cut at the suggested level (see details). If a (positive) integer, the tree is cut with nb.clusters clusters
seuil the size of the area kept for each group of consumers
consol a boolean. If TRUE, a k-means consolidation is performed
ncp number of dimensions kept in the results (by default 5)
scale.conso scale data by consumer
graph.carto if TRUE, the preference map is displayed. If FALSE, no graph is displayed
graph.hcpc if TRUE, graphics of segmentation (trees and indiviuals map) are displayed. If FALSE, no graph are displayed
graph.group if TRUE, preference maps for each group are displayed. If FALSE, no map are displayed
col.min define the color which match to the low levels of preference
col.max define the color which match to the high levels of preference
contrast define the color contrast between groups’ areas and the rest of the map
level the number of standard deviations used in the calculation of the preference response surface for all the consumers
asp if 1 is assigned to that parameter, the graphic displays are output in an orthonormal coordinate system
lwd control the line width for the outlines defining groups’ areas
Details

The preference mapping methods are commonly used in the fields of market research and research and development to explore and understand the structure and tendencies of consumer preferences, to link consumer preference information to other data and to predict the behavior of consumers in terms of acceptance of a given product.

This function refers to the method introduced by M. Danzart. A segmentation of consumers is performed, and a preference map is displayed for each group of consumers. The original preference map is built, the areas of each group are underlined thanks to a contrast, and the number of consumers is shown.

Author(s)

Francois Husson <husson@agrocampus-rennes.fr>
Sophie Birot and Celia Pontet

References

See Also

MFA, GPA, carto

Examples

```r
## Not run:  
## Example 1: carto on the sensory descriptors  
data(cocktail)  
res.pca <- PCA(senso.cocktail)  
results1 <- cartoconsumer(res.pca, hedo.cocktail)  
results2 <- cartoconsumer(res.pca, hedo.cocktail,  
    graph.hcpc=TRUE, graph.group=TRUE)  
  
## End(Not run)  
## Example 2  
## Not run:  
data(cocktail)  
res.mfa <- MFA(cbind.data.frame(senso.cocktail,compo.cocktail),  
    group=c(ncol(senso.cocktail),ncol(compo.cocktail)),  
    name.group=c("senso","compo"))  
results3 <- cartoconsumer(res.mfa, hedo.cocktail)  
## End(Not run)
```
chocolates

Chocolates data

Description

The data used here refer to six varieties of chocolates sold in France.

- For the sensory description: each chocolate was evaluated twice by 29 panelists according to 14 sensory descriptors;
- For the hedonic data: each chocolate was evaluated on a structured scale from 0 to 10, by 222 consumers, according to their liking (0) or disliking (10);
- For the sensory panels description: each chocolate was evaluated by 7 panels according to 14 sensory descriptors.

Usage

data(chocolates)

Format

There are three data frames: - sensochoc: a data frame with 348 rows and 19 columns: 5 qualitative variables (Panelist, Session, Form, Rank, Product) and 14 sensory descriptors;
- hedochoc: a data frame with 6 rows and 222 columns: each row corresponds to a chocolate and each column to the hedonic scores given by one of the 222 consumers participating in the study;
- sensopanels: a data frame with 6 rows and 98 columns: each row corresponds to a chocolate and each column to the mean over the panelists of a given panel according to a sensory descriptor.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

data(chocolates)
decat(sensochoc, formul = "-Product+Panelist", firstvar = 5, graph = FALSE)

cocktail

Cocktail data
The data used here refer to 16 cocktails. There are 3 files corresponding to the composition of the cocktails; the sensory description of the cocktails; the hedonic scores.

- For the composition of the cocktails: The mango, banana, orange and lemon concentration are known;
- For the sensory description: each cocktail was evaluated by 12 panelists according to 13 sensory descriptors (only the average of each cocktail are given). - For the hedonic data: each cocktail was evaluated on a structured scale from 0 to 10, by 100 consumers, according to their liking (0) or disliking (10).

There are three data frames: - compo.cocktail: a data frame with 16 rows and 4 columns: the composition of each cocktail is given for the 4 ingredients;
- senso.cocktail: a data frame with 16 rows and 13 columns: each cocktail was evaluated by 12 panelists according to 13 sensory descriptors;
- hedo.cocktail: a data frame with 16 rows and 100 columns: each cocktail was evaluated on a structured scale from 0 to 10, by 100 consumers, according to their liking (0) or disliking (10).

Applied Mathematics Department, Agrocampus Rennes

Return a colored display of a data frame according to 4 threshold levels.

coltable(matrice, col.mat = matrice, nbrow = nrow(matrice), nbcoll = ncol(matrice), level.lower = 0.05, col.lower = "mistyrose", level.upper = 1.96, col.upper = "lightblue", cex = 0, nbdec = 4, main.title = NULL, level.lower2 = -1e10, col.lower2 = "red", level.upper2 = 1e10, col.upper2 = "blue", novalue = FALSE)
Arguments

matrice a data frame (or a matrix) with only quantitative variables
col.mat a data frame (or a matrix) from which the cells of the matrice data frame are colored; by default, col.mat=matrice
nbrow the number of rows to be displayed (by default, nrow(matrice))
bncol the number of columns to be displayed (by default, ncol(matrice))
level.lower the threshold below which cells are colored in col.lower
col.lower the color used for level.lower
level.upper the threshold above which cells are colored in col.upper
col.upper the color used for level.upper
cex cf. function par in the graphics package
nbdec the number of decimal places displayed
main.title title of the graph(s)
level.lower2 the threshold below which cells are colored in col.lower2; this level should be less than level.lower
col.lower2 the color used for level.lower2
level.upper2 the threshold above which cells are colored in col.upper2; this level should be greater than level.upper
col.upper2 the color used for level.upper2
novalue boolean, if TRUE the values are not written

Details

This function is very useful especially when there are a lot of values to check.

Author(s)

François Husson, Sébastien Lê

Examples

Example 1
data(chocolates)
resdecat<-decat(sensochoc, formul = "~Product+Panelist", firstvar = 5, graph = FALSE)
resaverage<-averagetable(sensochoc, formul = "~Product+Panelist", firstvar = 5)
resaverage.sort = resaverage[rownames(magicsort(resdecat$tabT)), colnames(magicsort(resdecat$tabT))]
coltable(resaverage.sort, magicsort(resdecat$tabT), level.lower = -1.96, level.upper = 1.96, main.title = "Average by chocolate")

Example 3
Not run:
data(chocolates)
resperf<-paneliperf(sensochoc,
formul = "~Product+Panelist+Product:Panelist",
formul.j = "~Product", col.j = 1, firstvar = 5, lastvar = 12,
synthesis = FALSE, graph = FALSE)
resperfprob<-magicsort(resperf$prob.ind, method = "median")
coltable(resperfprob, level.lower = /zero.noslash./zero.noslash5, level.upper = 1,
main.title = "P-value of the F-test (by panelist)"
resperfr2<-magicsort(resperf$r2.ind, method = "median",
ascending = FALSE)
coltable(resperfr2, level.lower = 0.00, level.upper = 0.85,
main.title = "Adjusted R-square (by panelist)"
End(Not run)

compo.cocktail Composition of the cocktails data

Description

The data used here refer to the composition of 16 cocktails, i.e. the mango, banana, orange and lemon concentration.

Usage

data(cocktail)

Format

A data frame with 16 rows and 4 columns: the composition of each cocktail is given for the 4 ingredients.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

data(cocktail)
construct.axes

Coordinates of individuals and illustrative individuals for PCA or MFA

Description

This function is especially designed to be used in a sensory data analysis context. Returns the coordinates of the products when performing either PCA or MFA and the coordinates of the "partial" products when performing MFA. Returns also the panelists' coordinates when projected as illustrative rows onto the products' space. Produces graphs of products and descriptors from the output of PCA or MFA.

Usage

construct.axes(matrice, coord = c(1,2), scale.unit = TRUE, group = NULL, name.group = NULL, centerbypanelist = FALSE, scalebypanelist = FALSE, method = "coeff")

Arguments

matrice a data.frame made up of at least two qualitative variables (the panelist and the product variables), the others are sensory descriptors used to perform an MFA or a PCA if group = NULL
coord a length 2 vector specifying the components to plot
scale.unit boolean, if TRUE the descriptors are scaled to unit variance
group the number of variables in each group of variables when multiple factor analysis is performed (by default this parameter equals NULL and a PCA is performed)
name.group the names of the groups of variables when mfa is performed (if group differs from NULL)
centerbypanelist center the data by panelist before the construction of the axes
scalebypanelist scale the data by panelist before the construction of the axes
method the method to replace the missing values: "average" or "coeff" (coefficients of the product variable in the anova model)

Details

The input data set is an object of class data.frame, for which the two first columns are qualitative variables (the first variable refers to the panelist variable and the second to the product variable) and the others are quantitative.

The output of this function is a list with one element when performing PCA and two elements when performing MFA. The first element is the data frame of the coordinates of the products according to the whole panel (Panelist=0) and to the panelists. The second element is the data frame of the
coordinates of the "partial products" according to the whole panel (Panelist=0) and to the panelists.

This function is necessary when calculating confidence ellipses for products.

Value

A list containing the following elements:

- `eig` a matrix with the component of the factor analysis (in row) and the eigenvalues, the inertia and the cumulative inertia for each component
- `moyen` the coordinates of the products with respect to the panel and to each panelists
- `partiel` the coordinates of the *partial* products with respect to the panel and to each panelists

Returns also a correlation circle as well as a graph of individuals

Author(s)

François Husson

References

See Also

- `MFA`

Examples

```r
## Example1: PCA
data(chocolates)
donnee <- cbind.data.frame(sensochoc[,c(1,4,5:18)])
axe <- construct.axes(donnee, scale.unit = TRUE)

## Example2: MFA (two groups of variables)
data(chocolates)
donnee <- cbind.data.frame(sensochoc[,c(1,4,5:18)])
axe <- construct.axes(donnee, group = c(6,8),
                      name.group = c("A-F","T-S"),scale.unit = TRUE)
```
Description

Performs preference mapping techniques based on multidimensional exploratory data analysis. This methodology is oriented towards consumers’ preferences; here consumers are pictured according only to their preferences. In this manner, the distance between two consumers is very natural and easy to interpret, and a clustering of the consumers is also very easy to obtain.

Usage

```r
cpa(senso, hedo, coord=c(1,2), center = TRUE, scale = TRUE,
   nb.clusters = zero.noslash, scale.unit = FALSE,
   col = terrain.colors(45)[1:41])
```

Arguments

- `senso` a data frame of dimension (p,k), where p is the number of products and k the number of sensory descriptors
- `hedo` a data frame of dimension (p,j), where p is the number of products and j the number of consumers or panelists
- `coord` a length 2 vector specifying the components to plot
- `center` boolean, if TRUE then data are mean centered
- `scale` boolean, if TRUE then data are scaled to unit variance
- `nb.clusters` number of clusters to use (by default, 0 and the optimal number of clusters is calculated)
- `scale.unit` boolean, if TRUE then PCA is made on scaled data
- `col` color palette

Details

This methodology is oriented towards consumers’ preferences; here, consumers are pictured according only to their preferences. In this manner, the distance between two consumers is very natural and easy to interpret, and a clustering of the consumers is also very easy to obtain using a classic hierarchical clustering procedure performed on Euclidian distances with the Ward’s minimum variance criterion. The originality of the representation is that the characteristics of the products are also superimposed to the former picture.

Value

Return the following results:

- `clusters` the cluster number allocated to each consumer
- `result` the coordinates of the panelists, of the clusters, of the archetypes
decat

prod.clusters a list with as many elements as there are clusters; each element of the list gathers the specific products for its corresponding cluster

desc.clusters the correlation coefficients between the average hedonic scores per cluster and the sensory descriptors

A dendogram which highlight the clustering, a correlation circle that displays the hedonic scores, a graph of the consumers such as two consumers are all the more close that they do like the same products, as many graphs as there are variables: for a given variable, each consumer is colored according to the coefficient of correlation based on his hedonic scores and the variable.

Author(s)

François Husson <François.Husson@agrocampus-ouest.fr>
Sébastien Lê <Sebastien.Le@agrocampus-ouest.fr>

References

S. Lê, F. Husson, J. Pagès (2005). Another look at sensory data: how to "have your salmon and eat it, too!". *6th Pangborn sensory science symposium, August 7-11, 2005, Harrogate, UK.*

Examples

```r
## Not run:
data(cocktail)
res.cpa = cpa(cbind(compo.cocktail, senso.cocktail), hedo.cocktail)
## If you prefer a graph in black and white and with 3 clusters
res.cpa = cpa(cbind(compo.cocktail, senso.cocktail), hedo.cocktail,
             name.panelist = TRUE, col = gray((50:1)/50), nb.clusters = 3)
## End(Not run)
```

decat
DEscription of CATegories

Description

This function is designed to point out the variables that are the most characteristic according to the set of products in its whole, and to each of the products in particular.

This function is designed to test the main effect of a categorical variable (F-test) and the significance of its coefficients (T-test) for a set of endogenous variables and a given analysis of variance model. In most cases, the main effect is the product effect and the endogenous variables are the sensory descriptors.

Usage

```r
deCat(donnee, formul, firstvar, lastvar = length(colnames(donnee)),
      proba = 0.05, graph = TRUE, col.lower = "mistyrose",
      col.upper = "lightblue", nbrow = NULL, nbcol = NULL, random = TRUE)
```
Arguments

donnee

a data frame made up of at least two qualitative variables (product, panelist) and

a set of quantitative variables (sensory descriptors)

formul

the model that is to be tested

firstvar

the position of the first endogenous variable

lastvar

the position of the last endogenous variable (by default the last column of donnee)

proba

the significance threshold considered for the analyses of variance (by default 0.05)

graph

a boolean, if TRUE a barplot of the P-values associated with the F-test of the

product effet is displayed

col.lower

the color used for 'level.lower'. Only useful if graph is TRUE

col.upper

the color used for 'upper.lower'. Only useful if graph is TRUE

nbrow

the number of rows to be displayed (by default, all the values are displayed).

Only useful if graph is TRUE

nbcol

the number of columns to be displayed (by default, all the values are displayed).

Only useful if graph is TRUE

random

boolean, effect should be possible as fixed or random (default as random)

Details

The formul parameter must be filled in by an analysis of variance model and must begin with the
categorical variable of interest (e.g. the product effect) followed by the different other factors of
interest (and their combinations). E.g.:formul = "~Product+Panelist+Session".

Value

A list containing the following elements:

tabF

the V-test and the P-value of the F-test for each descriptor resulting from the

analysis of variance model

tabT

a (products,descriptors) data frame, in which each cell is the Vtest for a given

product and a given descriptor

coeff

a (products,descriptors) data frame, in which each cell is the coefficient resulting

from the analysis of variance model for a given product and a given descriptor

resF

the V-test and the P-value for each descriptor resulting from the analysis of vari-

ance model, sorted in ascending order

resT

a list which elements are data frames, one data frame per product: the coeffi-

cient, the P-value and the Vtest for each significant descriptor resulting from the

analysis of variance model, sorted in descending order

adjmean

a (products,descriptors) data frame, in which each cell is the adjusted mean re-

sulting from the analysis of variance model for a given product and a given
descriptor

A barplot of the P-values associated with the F-test of the product effet.

A colored table with the adjusted means of the categorical variable: the values significantly different
from the general mean are colored (significantly different with the proba level); the significantly
less are colored in red (by default) and the significantly great are colored in blue.
Author(s)
François Husson

References

See Also
aov

Examples
Example 1
```r
data(chocolates)
## model (AOV): " descriptor = product + panelist "
resdecat<-decat(sensochoc, formul="-Product+Panelist", firstvar = 5)
barrow(resdecat$tabT)
barrow(t(resdecat$tabT), numr = 3, numc = 3)
barrow(resdecat$coeff, color = "orange")
```

Example 2
```r
data(chocolates)
## model (AOV): " descriptor = product + panelist "
res2 <-decat(sensochoc, formul="-Product+Panelist", firstvar = 5,
             proba=1, graph = FALSE)
```

fahst

Factorial Approach for Hierarchical Sorting Task data

Description
Perform Factorial Approach for Hierarchical Sorting Task data (FAHST) on a table where the rows (i) are products and the columns (j) are for each consumer the partitionning variables associated with nested sorting. The columns are grouped by consumer. For the partitionning variables, the label associated with a group can be an arbitrary label (for example G1 for group 1, etc.) or the words associated with the group in the case of qualified hierarchical sorting.

Usage
```r
fahst(don,group,alpha=0.05,graph=TRUE,axes=c(1,2),name.group=NULL,ncp=5,B=200,ncp.boot=2)
```
Arguments

- **don**: a data frame with n rows (products) and p columns (nested partitions for all consumers)
- **group**: a list indicating the number of levels (nested partitions) for each consumer
- **alpha**: the confidence level of the ellipses
- **graph**: boolean, if TRUE a graph is displayed
- **axes**: a length 2 vector specifying the components to plot
- **name.group**: a vector containing the name of the consumers (by default, NULL and the consumers are named J1, J2 and so on)
- **ncp**: number of dimensions kept in the results (by default 5)
- **B**: the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
- **ncp.boot**: number of dimensions used for the Procrustean rotations to build confidence ellipses (by default 2)

Value

A list containing the following elements:

- **eig**: a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
- **ind**: a list of matrices containing all the results for the products (coordinates, square cosine, contributions)
- **var**: a list of matrices containing all the results for the categories of the different nested partitions (coordinates, square cosine, contributions, v.test)
- **group**: a list of matrices containing all the results for consumers (coordinates, square cosine, contributions)
- **call**: a list with some statistics

Author(s)

Marine Cadoret, Sébastien Lé <sebastien.le@agrocampus-ouest.fr>

References

Examples

```r
## Not run:
data(cards)
## Example of FAHST results
group.cards<-c(2,3,2,2,4,2,3,2,1,3,2,3,3,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3)
res.fahst<-fahst(cards,group=group.cards)
## End(Not run)
```
Factorial Approach for Sorting Napping Task data

Description

Perform Factorial Approach for Sorting Napping Task data (FASNT) on a table where the rows (i) are products and the columns (j) are for each consumer the coordinates of the products on the tablecloth associated with napping on the one hand and the partitionning variable associated with categorization on the other hand. The columns are grouped by consumer. For the partitionning variable, the label associated with a group can be an arbitrary label (for example G1 for group 1, etc.) or the words associated with the group in the case of qualified sorted napping.

Usage

fasnt(don, first="nappe", B=100, axes=c(1,2), alpha=0.05, ncp=5, graph=TRUE, name.group=NULL, sep.word=" ", word.min=5, ncp.boot=2)

Arguments

don a data frame with n rows (products) and p columns (assessor : categorical variables)

first 2 possibilities: "nappe" if the napping variables first appear for each consumer or "catego" if it is the categorization variable

B the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses

axes a length 2 vector specifying the components to plot

alpha the confidence level of the ellipses

ncp number of dimensions kept in the results (by default 5)

graph boolean, if TRUE a graph is displayed

name.group a vector containing the name of the consumers (by default, NULL and the group are named J1, J2 and so on)

sep.word the word separator character in the case of qualified sorted napping

word.min minimum sample size for the word selection in textual analysis

ncp.boot number of dimensions used for the Procrustean rotations to build confidence ellipses (by default 2)

Value

A list containing the following elements:

eig a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance

ind a list of matrices containing all the results for the products (coordinates, square cosine, contributions)
fast

Author(s)

Marine Cadoret, Sébastien Lé <sebastien.le@agrocampus-ouest.fr>

References

Cadoret, M., Lé, S., Pagès, J. (2009) Combining the best of two worlds, the "sorted napping". SPISE. Ho Chi Minh City, Vietnam

Examples

Not run:
data(smoothies)
Example of FASNT results
res.fasnt<-fasnt(smoothies,first="nappe",sep.word=";")

End(Not run)

Factorial Approach for Sorting Task data

Description

Perform Factorial Approach for Sorting Task data (FAST) on a table where the rows (i) are products and the columns (j) are consumers. A cell (i,j) corresponds either to the number of the group to which the product i belongs for the consumer j, or, in the case of "qualified" categorization, to the sequence of words associated with the group to which the product i belongs for the consumer j.

Usage

fast(don, alpha=0.05, sep.words=" ", word.min=5, graph=TRUE, axes=c(1,2), ncp=5, B=200, label.miss=NULL, ncp.boot=2)
Arguments

don a data frame with n rows (products) and p columns (assesor : categorical variables)
alpha the confidence level of the ellipses
sep.words the word separator character in the case of qualified categorization
word.min minimum sample size for the word selection in textual analysis
graph boolean, if TRUE a graph is displayed
axes a length 2 vector specifying the components to plot
ncp number of dimensions kept in the results (by default 5)
B the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
label.miss label associated with missing groups in the case of incomplete data set
ncp.boot number of dimensions used for the Procrustean rotations to build confidence ellipses (by default 2)

Value

A list containing the following elements:
eig a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
var a list of matrices containing all the results for the categories (coordinates, square cosine, contributions, v.test)
ind a list of matrices containing all the results for the products (coordinates, square cosine, contributions)
group a list of matrices containing all the results for consumers (coordinates, square cosine, contributions)
acm all the results of the MCA
cooccur the reordered co-occurrence matrix among products
reord the reordered matrix products*consumers
cramer the Cramer’s V matrix between all the consumers
textual the results of the textual analysis for the products
call a list with some statistics

Author(s)

Marine Cadoret, S\'ebastien L\^e <sebastien.le@agrocampus-ouest.fr>
References
Cadoret, M., L\^e, S., Pag\`es, J. (2008) A novel Factorial Approach for analysing Sorting Task data. 9th Sensometrics meeting. St Catharines, Canada

Examples
```r
## Not run:
data(perfume)
## Example of FAST results
res.fast<-fast(perfume,sep.words=";")
## End(Not run)
```

fcp

Free choice profiling

Description
Free choice profiling with confidence ellipses

Usage
```
fcp(X,group,scale=TRUE, ncp = NULL, axes=c(1,2), name.group = NULL, level.conf = 0.95, nbsim=500, nbchoix=5)
```

Arguments
- **X** data.frame
- **group** a list indicating the number of variables in each group; used when method="freechoice" or method="hsort"
- **scale** boolean, used when method="freechoice"; if TRUE, the variables are scaled
- **ncp** number of components used to procrustes the virtual subspaces on the true subspace; NULL by default and the number of components is estimated
- **axes** a length 2 vector specifying the components to plot
- **name.group** the names of each group of variables
- **level.conf** confidence level used to construct the ellipses. By default, 0.95
- **nbsim** the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
- **nbchoix** the number of panelists forming a virtual panel, by default the number of panelists in the original panel
- **cex** cf. function `par` in the `graphics` package
graphinter

- **color**: a vector with the colors used; by default there are 35 colors defined
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **new.plot**: boolean, if TRUE, a new graphical device is created
- **graph**: list with the graphs to draw; "ind", "var" and "ellipse" by default

Details

Perform MFA on the data frame and calculate confidence ellipses around the products

Value

Returns a list with the result of the MFA and the bootstraped results that can be used with the plotellipse function.

Author(s)

François Husson

Examples

```r
## Not run:
data(perfume_fcp)
res <- fcp(perfume_fcp, group = c(12,7,7,7,6,8))
## End(Not run)
```

graphinter

Graphical display of the interaction between two qualitative variables

Description

This function is designed to display the interaction between two qualitative variables, in most cases the *product* and the *session* variables.

Usage

```r
graphinter(donnee, col.p, col.j, firstvar, lastvar=ncol(donnee),
           numr = 2,numc = 2)
```

Arguments

- **donnee**: a data frame made up of at least two qualitative variables (*product*, *panelist*) and a set of quantitative variables (sensory descriptors)
- **col.p**: the position of one categorical variables of interest (the *product* variable)
- **col.j**: the position of one categorical variables of interest (the *session* variable)
- **firstvar**: the position of the first endogenous variable
The data set must be balanced (or not unbalanced too much).

Value

If the variables of interest are the product and the session variables, a list containing the following components:

- `prod` a data frame of dimension \((p,q)\), the means over the panelists and the sessions for the \(p\) products and the \(q\) sensory descriptors
- `seance` as many matrices of dimension \((p,q)\) as there are sessions, the means over the panelists for the \(p\) products, the \(q\) sensory descriptors and for each session

The graphical display of the interaction for each sensory descriptor.

Author(s)

François Husson, Sébastien Lê

References

P. Lea, T. Naes, M. Rodbotten. *Analysis of variance for sensory data*.

See Also

`aov`

Examples

```r
## Not run:
data(chocolates)
graphinter(sensochoc, col.p = 4, col.j = 2, firstvar = 5, lastvar = 12,
          numr = 1, numc = 1)
## End(Not run)
```
hedochoc

Cocktails hedonic scores

Description
The data used here refer to 16 cocktails. Each cocktail was evaluated on a structured scale from 0 to 10, by 100 consumers, according to their liking (0) or disliking (10).

Usage
data(cocktail)

Format
A data frame with 16 rows and 100 columns: each row corresponds to a cocktail and each column to the hedonic scores given by one of the 100 consumers participating in the study.

Source
Département de mathématiques appliquées, Agrocampus Rennes

Examples
data(cocktail)

hedochoc

Chocolates hedonic scores

Description
The data used here refer to six varieties of chocolates sold in France. Each chocolate was evaluated on a structured scale from 0 to 10, by 222 consumers, according to their liking (0) or disliking (10).

Usage
data(chocolates)

Format
A data frame with 6 rows and 222 columns: each row corresponds to a chocolate and each column to the hedonic scores given by one of the 222 consumers participating in the study.

Source
Département de mathématiques appliquées, Agrocampus Rennes

Examples
data(chocolates)
histprod

Histogram for each descriptor

Description
Computes automatically histograms for a set of quantitative variables.

Usage
```
histprod(donnee, firstvar, lastvar = ncol(donnee), numr = 2,
         numc = 2, adjust = 1)
```

Arguments
- **donnee**: a data frame
- **firstvar**: the position of the first endogenous variable
- **lastvar**: the position of the last endogenous variable (by default the last column of `donnee`)
- **numr**: the number of histograms per row (by default 2)
- **numc**: the number of histograms per column (by default 2)
- **adjust**: the bandwidth used is actually `adjust*bw`. This makes it easy to specify values like "half the default" bandwidth.

Details
Displays histograms with a common Y-axis as well as the local estimator of the density for each descriptor, hence the `adjust` parameter to fill in. Displays also the normal distribution with mean and variance the respective values estimated for each descriptor.

Author(s)
Sébastien Lê

See Also
- `density`
- `hist`

Examples
```
data(chocolates)
histprod(sensochoc, firstvar = 5, lastvar = 10)
```
hsortplot

Plot consumers’ hierarchical sorting

Description

Plot consumers’ hierarchical sorting

Usage

hsortplot(don, group, numr = 2, numc = 2)

Arguments

don a data frame with n rows (products) and p columns (nested partitions for all consumers)

 group a list indicating the number of levels (nested partitions) for each consumer

numr the number of hierarchical sorting per row (by default 2)

numc the number of hierarchical sorting per column (by default 2)

Details

The data used here refer to a specific experiment, where children were asked to provide hierarchical sorting (several nested partitions) from 16 cards.

Value

Returns as many graphs as there are consumers, each graph represents hierarchical sorting provided by a consumer

Author(s)

Marine Cadoret, Sébastien Le <sebastien.le@agrocampus-ouest.fr>

See Also

fahst

Examples

Not run:
data(cards)
group.cards<-c(2,3,3,2,2,4,2,3,2,1,3,2,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3)
hsortplot(cards, group.cards)

End(Not run)
Description

This version of the Indscal model is specially adapted to Napping data type, i.e. products (stimuli) are positioned on a tableclothe by panelists, then their coordinates are used as input for the Indscal model.

Usage

```r
indscal(matrice, matrice.illu = NULL, maxit = 200, coord = c(1,2),
         eps = 1/10^5)
```

Arguments

- `matrice`: a data frame of dimension \((p,2j)\), where \(p\) represents the number of products and \(j\) the number of panelists (two coordinates per panelist)
- `matrice.illu`: a data frame with illustrative variables (with the same row.names in common as in `matrice`)
- `maxit`: the maximum number of iterations until the algorithm stops
- `coord`: a length 2 vector specifying the components to plot
- `eps`: a threshold with respect to which the algorithm stops, i.e. when the difference between the criterion function at step \(n\) and \(n+1\) is less than `eps`

Value

Returns a list including:

- `W`: a matrix with the subject coordinates
- `points`: a matrix with the stimuli (individuals) coordinates
- `subvar`: a vector with the strain between each configuration and the stimuli configuration
- `r2`: the strain criterion

The functions returns the three following graphs:
- A stimuli representation, i.e. a representation of the products
- A representation of the weights computed by the Indscal model.
- A correlation circle of the variables enhanced by illustrative variables (supplementary columns)

Author(s)

Peter Ellis
François Husson
References

See Also
nappeplot, pmfa

Examples
```r
## Not run:
data(napping)
nappeplot(napping.don)
resindscal<- indscal(napping.don, napping.words)
x11()
prefpls(cbind(resindscal$points, napping.words))
x11()
pmfa(napping.don, napping.words, mean.conf = resindscal$points)
## End(Not run)
```

```
interact                  Estimation of interaction coefficients

Description
Computes automatically the interaction coefficients between two quantitative variables col.p and col.j for the following model: "~col.p+col.j+col.p:col.j".

Usage
interact(donnee, col.p, col.j, firstvar, lastvar = ncol(donnee))

Arguments
donnee                   a data frame made up of at least two qualitative variables (*product, panelist*) and a set of quantitative variables (sensory descriptors)
col.p                    the position of the *product* effect for instance
col.j                    the position of the *panelist* effect for instance
firstvar                 the position of the first endogenous variable
lastvar                  the position of the last endogenous variable (by default the last column of *donnee*)

Details
In most cases col.p represents the *product* effect, col.j represents the *panelist* effect, and the variables of interest are the sensory descriptors. The model considered is the following one: "~Product+Panelist+Product:Panelist". Data must be complete (but not necessarily balanced).
```
Value

Returns an array of dimension \((p,j,k)\), where \(p\) is the number of products, \(j\) the number of panelists and \(k\) the number of sensory descriptors. The entries of this array are the interaction coefficients between a panelist and a product for a given descriptor.
For each sensory descriptor, returns a graph where each (panelist,product) interaction coefficient is displayed, a graph where the contribution to the (panelist,product) interaction coefficient by product is displayed, a graph where the contribution to the (panelist,product) interaction coefficient by panelist is displayed.

Author(s)

François Husson

See Also

aov

Examples

```r
## Not run:
data(chocolates)
resinteract=interact(sensochoc, col.p = 4, col.j = 1, firstvar = 5)
## End(Not run)
```

magicsort

Returns a sorted data matrix

Description

Sort the rows and columns of a matrix in a "magic" order or by ascending (or descending) mean or median or geometrical mean.

Usage

```r
magicsort(matrice, sort.mat = matrice, method = "magic",
          byrow = TRUE, bycol = TRUE, ascending = TRUE)
```

Arguments

- `matrice`: a data matrix to sort
- `sort.mat`: sort the rows and columns according to the result of the PCA made on this matrix (by default the matrice)
- `method`: four types of calculations, magic ("magic"), ("median"), arithmetical ("mean") or geometrical ("geo") mean (by default magic)
- `byrow`: boolean, if TRUE then data are sorted over the rows
- `bycol`: boolean, if TRUE then data are sorted over the columns
- `ascending`: boolean, if TRUE then data are sorted in ascending order
Details

Very useful function to compare results.

Author(s)

François Husson, Sébastien Lê

Examples

```r
## Example 1
data(chocolates)
resdecat<-decat(sensochoc, formul = "~Product", firstvar = 5,
graph = FALSE)
coltable(magicsort(resdecat$tabT), level.lower = -1.96,
level.upper = 1.96, main.title = "Products' description")

## Example 2
data(chocolates)
resperf<-paneliperf(sensochoc,
formul = "~Product+Panelist+Product:Panelist",
formul.j = "~Product", col.j = 1, firstvar = 5, lastvar = 12,
synthesis = FALSE, graph = FALSE)
res.sort=magicsort(resperf$prob.ind, method = "median")
coltable(res.sort, main.title = "P-values of the F-test by panelist")
```

nappeplot

Plot panelists' tableclothe

Description

Plot panelists' tableclothe.

Usage

```r
nappeplot(donnee, numr = 2, numc = 2, color = "blue", lim = c(60,40))
```

Arguments

donnee a data frame of dimension \((p,2j)\), where \(p\) represents the number of products and \(j\) the number of panelists
numr the number of tableclothe per row (by default 2)
numc the number of tableclothe per column (by default 2)
color the color used to display the products
lim the size of the tableclothe
Details

The data used here refer to a specific experiment, where panelists are asked to position products on a tablecloth of dimension 1im, by default (60,40).

Value

Returns as many graphs as there are panelists, each graph represents products positioned by a given panelist on a tablecloth.

Author(s)

François Husson

References

See Also

`napping`, `pmfa`, `indscal`

Examples

```r
## Not run:
data(napping)
nappeplot(napping.don)
## End(Not run)
```

`nappesortplot` Plot consumers’ sorted tablecloth

Description

Plot consumers’ sorted tablecloth.

Usage

```
nappesortplot(donnee, first="nappe", numr = 2, numc = 2, lim = c(60,40))
```
Arguments

donnee a data frame of dimension \((p,3j)\), where \(p\) represents the number of products and
 \(j\) the number of consumers

first 2 possibilities: "nappe" if the napping variables first appear for each consumer
 or "catego" if it is the categorization variable

numr the number of tablecloth per row (by default 2)

numc the number of tablecloth per column (by default 2)

lim the size of the tablecloth

Details

The data used here refer to a specific experiment, where consumers are asked to position products
on a tablecloth of dimension \(lim\), by default (60,40) and to categorize them.

Value

Returns as many graphs as there are consumers, each graph represents products positioned by a
given consumer on a tablecloth and colored according to the categorization

Author(s)

Marine Cadoret, Sébastien Le <sebastien.le@agrocampus-ouest.fr>

References

evaluation. Journal of Sensory Studies

See Also

fasnt

Examples

```r
## Not run:
data(smoothies)
nappesortplot(smoothies, first="nappe")
## End(Not run)
```
Description

The data used here refer to 10 different French wines evaluated by 11 panelists. They were asked to position the wines on a tablecloth of dimension (60,40). They were asked to describe each wine using their own word list.

Usage

data(napping)

Format

There are two data frames: - napping.don: A data frame of dimension (10,22): each row represents a French wine, each couple (Xi,Yi) represents the coordinates of the wines positioned on a tablecloth for a given panelist; - napping.words: A data frame of dimension (10,14): each row represents a French wine, each column an attribute, each cell the number of times a given attribute was quoted for a given wine.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

Not run:
data(napping)
nappeplot(napping.don)
x11()
pmfa(napping.don, napping.words)

End(Not run)
Format

A data frame of dimension (10,22): each row represents a French wine, each couple (Xi,Yi) represents the coordinates of the wines positioned on a tablecloth for a given panelist.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

```r
## Not run:
data(napping)
nappeplot(napping.don)
res <- pmfa(napping.don, napping.words)
res2 <- boot(napping.don, method="napping")
## End(Not run)
```

Description

The data used here refer to 10 different French wines evaluated by 11 panelists. They were asked to describe each wine using their own word list.

Usage

data(napping)

Format

A data frame of dimension (10,14): each row represents a French wine, each column an attribute, each cell the number of times a given attribute was quoted for a given wine

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

```r
## Not run:
data(napping)
nappeplot(napping.don)
x11()
pmfa(napping.don, napping.words)
## End(Not run)
```
optimaldesign

Description

Construction of an optimal design balanced for first order of carry-over effect.

Usage

optimaldesign(nbPanelist, nbProd, nbProdByPanelist, nbPanelistMin = nbPanelist, ordre = TRUE, weight, graine, nbDesignProd, nbDesignOrdre, matEssImp)

Arguments

- **nbPanelist**: Maximum number of panelists
- **nbProd**: Number of products
- **nbProdByPanelist**: Number of products that each panelist will evaluate
- **nbPanelistMin**: Minimum number of panelists who will evaluate the products
- **ordre**: Boolean, if TRUE the order of presentation of the product to the panelist is given
- **weight**: Importance of the rank and of the carry-over effect. From 0 to 1, if 0 the design will only take into account the carry-over effect (and not the rank effect).
- **graine**: Initialization of the algorithm
- **nbDesignProd**: Number of iteration of the algorithm to affect the products to the panelists
- **nbDesignOrdre**: Number of iteration of the algorithm for the rank of presentation
- **matEssImp**: Matrix of the imposed experiments

Value

List with

- **design**: Design with the products evaluated by each panelist
- **rank**: Design with the products evaluated by each panelist and with the rank

Author(s)

E. Pérelin, O. Tran, J. Mazet

References

Examples

```r
## Not run:
optimaldesign(nbPanelist=10,nbPanelistMin=8,nbProd=5,nbProdByPanelist=3)

## End(Not run)
```

paneliperf

Panelists' performance according to their capabilities to discriminate between products

Description

Computes automatically P-values, Vtests, residuals, r-square for each category of a given qualitative variable (e.g. the `panelist` variable);
Computes he agreement between each panelist and the panel results;
Gives the panel results (optional).

Usage

```r
paneliperf(donnee, formul, formul.j = ~Product, col.j, firstvar, lastvar = ncol(donnee), synthesis = FALSE, random = TRUE, graph = FALSE)
```

Arguments

- **donnee**: a data frame made up of at least two qualitative variables (`product`, `panelist`) and a set of quantitative variables (sensory descriptors)
- **formul**: the aov model used for the panel
- **formul.j**: the aov model used for each panelist (no `panelist` effect allowed)
- **col.j**: the position of the `panelist` variable
- **firstvar**: the position of the first endogenous variable
- **lastvar**: the position of the last endogenous variable (by default the last column of `donnee`)
- **synthesis**: boolean, the possibility to have the anova results for the panel model
- **random**: boolean, the status of the Panelist variable in the anova model for the panel
- **graph**: boolean, draws the PCA and MFA graphs

Details

The `formul` parameter must be filled in by an analysis of variance model and must begin with the categorical variable of interest (e.g. the product effect) followed by the different other factors of interest (and their combinations). E.g.: `formul = ~Product+Session`.
Value

A list containing the following components:

- `prob.ind`: a matrix which rows are the panelist, which columns are the endogenous variables (in most cases the sensory descriptors) and which entries are the P-values associated to the AOV model.
- `vtest.ind`: a matrix which rows are the panelist, which columns are the endogenous variables (in most cases the sensory descriptors) and which entries are the Vtests associated to the AOV model.
- `res.ind`: a matrix which rows are the panelist, which columns are the endogenous variables (in most cases the sensory descriptors) and which entries are the residuals associated to the AOV model.
- `r2.ind`: a matrix which rows are the panelist, which columns are the endogenous variables (in most cases the sensory descriptors) and which entries are the R-square associated to the AOV model.
- `signif.ind`: a vector with the number of significant descriptors per panelist.
- `agree.ind`: a matrix with as many rows as there are panelists and as many columns as there are descriptors and the entries of this matrix are the correlation coefficients between the product coefficients for the panel and for the panelists.
- `complete`: a matrix with the v-test corresponding to the p.value (see `p.value` below), the median of the agreement (see `agree.upper`), the standard deviation of the panel anova model (see `res` below).
- `p.value`: a matrix of dimension \((k,m)\) of \(P-values\) associated with the F-test for the \(k\) descriptors and the \(m\) factors and their combinations considered in the analysis of variance model of interest.
- `variability`: a matrix of dimension \((k,m)\) where the entries correspond to the percentages of variability due to the effects introduced in the analysis of variance model of interest.
- `res`: a vector of dimension \(k\) of residual terms for the analysis of variance model of interest.
- `r2`: a vector of dimension \(k\) of r-squared for the analysis of variance model of interest.

The usual graphs when MFA is performed on the data.frame resulting from `vtest.ind` and `agree.ind`. The PCA graphs for the complete output.

Author(s)

François Husson, Sébastien Lê

References

See Also

`panelperf`, `aov`

Examples

```r
## Not run:
data(chocolates)
res<-paneliperf(sensochoc, formul = "~Product+Panelist+Session+
Product:Panelist+Product:Session+Panelist:Session",
formul.j = "~Product", col.j = 1, firstvar = 5, synthesis = TRUE)
resprob<-magicsort(res$prob.ind, method = "median")
coltable(resprob, level.lower = 0.05, level.upper = 1,
main.title = "P-value of the F-test (by panelist)"
hist(resprob,main="Histogram of the P-values",xlab="P-values")

resr2<-magicsort(res$r2.ind, method = "median", ascending = FALSE)
coltable(resr2, level.lower = 0.00, level.upper = 0.85,
main.title = "Adjusted R-square (by panelist)"

resagree<-magicsort(res$agree, sort.mat = res$r2.ind, method = "median")
coltable(resagree, level.lower = 0.00, level.upper = 0.85,
main.title = "Agreement between panelists"
hist(resagree,main="Histogram of the agreement between panelist and panel",
xlab="Correlation coefficient between the product effect for
panelist and panel")

coltable(magicsort(res$p.value, sort.mat = res$p.value[,1], bycol = FALSE,
method = "median"),
main.title = "Panel performance (sorted by product P-value)"

## End(Not run)
```

`panellipse`

Confidence ellipses around products based on panelists descriptions

Description

Virtual panels are generated using Bootstrap techniques in order to display confidence ellipses around products.

Usage

```r
panellipse(donnee, col.p, col.j, firstvar, lastvar = ncol(donnee),
alpha = 0.05, coord = c(1,2), scale.unit = TRUE, nbsimul = 500,
nbchoix = NULL, group = NULL, name.group = NULL,
level.search.desc = 0.2, centerbypanelist = TRUE,
scalebypanelist = FALSE, name.pannelist = FALSE,
variability.variable = TRUE, cex = 1, color = NULL)
```
Arguments

donnee a data frame made up of at least two qualitative variables (product, panelist) and a set of quantitative variables (sensory descriptors)
col.p the position of the product variable
col.j the position of the panelist variable
firstvar the position of the first sensory descriptor
lastvar the position of the last sensory descriptor (by default the last column of donnee)
alpha the confidence level of the ellipses
coord a length 2 vector specifying the components to plot
scale.unit boolean, if T the descriptors are scaled to unit variance
nbsimul the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
nbchoix the number of panelists forming a virtual panel, by default the number of panelists in the original panel
group the number of variables in each group of variables when multiple factor analysis is performed (by default this parameter equals NULL and a PCA is performed)
name.group the names of the groups of variables when mfa is performed (if group differs from NULL)
level.search.desc the threshold above which a descriptor is not considered as discriminant according to AOV model "descriptor=Product+Panelist"
centerbypanelist boolean, if T center the data by panelist before the construction of the axes
scalebypanelist boolean, if T scale the data by panelist before the construction of the axes (by default, FALSE is assigned to that parameter)
name.panelist boolean, if T then the name of each panelist is displayed on the plotpanelist graph (by default, FALSE is assigned to that parameter)
variability.variable boolean, if T a plot with the variability of the variable is drawn and a confidence intervals of the correlation coefficient between descriptors are calculated
cex cf. function par in the graphics package
color a vector with the colors used; by default there are 35 colors defined

Details

Panellipse, step by step:
Step 1 Performs a selection of discriminating descriptors with respect to a threshold set by users
Step 2 Virtual panels are generated usingBootstrap techniques; the number of panels as well as their size are set by users with the nbsimul and nbchoix parameters
Step 3 Coordinates of the products with respect to each virtual panel are computed
Step 4 Each product is then circled by its confidence ellipse generated by virtual panels and comprising (1-alpha)*100 percent of the virtual products
Step 5 Variability of the variables is drawn and confidence interval of the correlation coefficient between descriptors are calculated by bootstrap
Value

A list containing the following elements:

- **eig**: a matrix with the component of the factor analysis (in row) and the eigenvalues, the inertia and the cumulative inertia for each component.

- **coordinates**: a list with: the coordinates of the products with respect to the panel and to each panelists and the coordinates of the *partial* products with respect to the panel and to each panelists.

- **hotelling**: Returns a matrix with the P-values of the Hotelling’s T2 tests for each pair of products: this matrix allows to find the product which are significantly different for the 2-components sensory description; if an MFA is done, *hotelling* returns as many matrices as there are group, these matrices allows to find the product which are significantly different for the 2-components sensory description of the group, and it returns also a *global* matrix corresponding to the P-values for the tests corresponding to the mean product.

- **correl**: a list with: the matrix of the estimated correlation coefficients and two matrices corresponding to the confidence intervals, min and max, of the correlation coefficients calculated by bootstrap.

Returns a graph of the products as well as a correlation circle of the descriptors.

Returns a graph where each product is displayed with respect to a panel and to each panelist composing the panel; products described by the panel are displayed as square, they are displayed as circle when they are described by each panelist.

Returns a graph where each product is circled by its confidence ellipse generated by virtual panels. When a Multiple Factor Analysis is performed, returns a graph where each partial product is circled by its confidence ellipse generated by virtual panels.

Returns a graph where the variability of each variable is drawn on the correlation circle graph.

Author(s)

François Husson

References

See Also

panellipse.session, panelmatch

Examples

Not run:
Example 1: PCA
data(chocolates)
res <- panellipse(sensochoc, col.p = 4, col.j = 1, firstvar = 5)
coltable(res$hotelling, main.title = "P-values for the Hotelling's T2 tests")

If we consider only 12 panelists in a virtual panel,
what would be the size of the ellipses
res2 <- panellipse(sensochoc, col.p = 4, col.j = 1, nbchoix = 12, firstvar = 5)
coltable(res2$hotelling, main.title = "P-values for the Hotelling's T2 tests")

If we want the confidence ellipses around the individual descriptions
panellipse(sensochoc, col.p = 4, col.j = 1, nbchoix = 1, firstvar = 5)

Example 2: MFA
data(chocolates)
res <- panellipse(sensochoc, col.p = 4, col.j = 1, firstvar = 5,
group = c(6,8), name.group = c("G1","G2"))
for (i in 1:dim(res$hotelling$bygroup)[3]) coltable(res$hotelling$bygroup[,i],
main.title = paste("P-values for the Hotelling’s T2 tests (",
dimnames(res$hotelling$bygroup)[3][[1]][i],")",sep=""))

End(Not run)

panellipse.session Repetability of panelists descriptions studied by confidence ellipses
around products per session

Description

Virtual panels are generated using Bootstrap techniques in order to display confidence ellipses
around products.

Usage

panellipse.session(donnee, col.p, col.j, col.s, firstvar,
lastvar = ncol(donnee), alpha = 0.05, coord = c(1,2),
scale.unit = TRUE, nbsimul = 500, nbchoix = NULL,
level.search.desc = 0.2, centerbypanelist = TRUE,
scalebypanelist = FALSE, name.panelist = FALSE,
variability.variable = FALSE, cex = 1, color= NULL)
Arguments

donnee a data frame made up of at least two qualitative variables (product, panelist) and
a set of quantitative variables (sensory descriptors)
col.p the position of the product variable
col.j the position of the panelist variable
col.s the position of the session variable
firstvar the position of the first sensory descriptor
lastvar the position of the last sensory descriptor (by default the last column of donnee)
alpha the confidence level of the ellipses
coord a length 2 vector specifying the components to plot
scale.unit boolean, if T the descriptors are scaled to unit variance
nbsimul the number of simulations (corresponding to the number of virtual panels) used
to compute the ellipses
nbchoix the number of panelists forming a virtual panel, by default the number of panelists in the original panel
level.search.desc the threshold above which a descriptor is not considered as discriminant according to AOV model "descriptor=Product+Panelist"
centerbypanelist boolean, if T center the data by panelist before the construction of the axes
scalebypanelist boolean, if T scale the data by panelist before the construction of the axes (by default, FALSE is assigned to that parameter)
name.panelist boolean, if T then the name of each panelist is displayed on the plot panelist graph (by default, FALSE is assigned to that parameter)
variability.variable boolean, if T a plot with the variability of the variable is drawn and a confidence intervals of the correlations between descriptors are calculated
cex cf. function par in the graphics package
color a vector with the colors used; by default there are 35 colors defined

Details

panellipse.session, step by step:
Step 1 Construct a data frame by session
Step 2 Performs a selection of discriminating descriptors with respect to a threshold set by users
Step 3 MFA is computed with one group for one session
Step 4 Virtual panels are generated using Boostrap techniques; the number of panels as well as their size are set by users with the nbsimul and nbchoix parameters
Step 5 Coordinates of the products with respect to each virtual panels are computed
Step 6 Each product is then circled by its confidence ellipse generated by virtual panels and comprising (1-alpha)*100 percent of the virtual products
panellipse.session

Value

A list containing the following elements:

bysession the data by session
eig a matrix with the component of the factor analysis (in row) and the eigenvalues, the inertia and the cumulative inertia for each component
coordinates a list with: the coordinates of the products with respect to the panel and to each panelists and the coordinates of the partial products with respect to the panel and to each panelists
hotelling returns a matrix with the P-values of the Hotelling’s T2 tests for each pair of products: this matrix allows to find the product which are significantly different for the 2-components sensory description
variability returns an index of the sessions’ reproducibility: the first eigenvalue of the separate PCA performed on homologous descriptors

Returns a graph of the products as well as a correlation circle of the descriptors.

Returns a graph where each product is displayed with respect to a panel and to each panelist composing the panel; products described by the panel are displayed as square, they are displayed as circle when they are described by each panelist.

Returns a graph where each product is circled by its confidence ellipse generated by virtual panels.

Returns a graph where each partial product is circled by its confidence ellipse generated by virtual panels.

Returns a graph where the variability of each variable is drawn on the correlation circle graph.

Author(s)

François Husson, Sébastien Lê

References

See Also

panellipse
Examples

```r
## Not run:
data(chocolates)
res <- panellipse.session(sensochoc, col.p = 4, col.j = 1, col.s = 2,
                         firstvar = 5)
magicsort(res$variability)
for (i in 1:dim(res$hotelling$bysession)[3]) coltable(res$hotelling$bysession[,,i],
                      main.title = paste("P-values for the Hotelling's T2 tests (",
                      dimnames(res$hotelling$bysession)[3][[1]][i],")",sep=""))
## End(Not run)
```

panelmatch

Confidence ellipses around products based on panel descriptions

Description

Comparison of panels.

Usage

```r
panelmatch(donnee, col.p, col.j, firstvar,
           alpha = 0.05, coord = c(1,2), scale.unit = TRUE, nbsimul = 500,
           nbchoix = NULL, centerbypanelist = TRUE,
           scalebypanelist = FALSE, name.panelist = FALSE, cex = 1,
           color = NULL, hierar = NULL)
```

Arguments

- **donnee**: a list of data frames, each one made up of at least two qualitative variables (`product, panelist`) and a set of quantitative variables (sensory descriptors)
- **col.p**: the position of the `product` variable (in each data frame, the same position)
- **col.j**: the position of the `panelist` variable (in each data frame, the same position)
- **firstvar**: the position of the first sensory descriptor (in each data frame, the same position)
- **alpha**: the confidence level of the ellipses
- **coord**: a length 2 vector specifying the components to plot
- **scale.unit**: boolean, if T the descriptors are scaled to unit variance
- **nbsimul**: the number of simulations (corresponding to the number of virtual panels) used to compute the ellipses
- **nbchoix**: the number of panelists forming a virtual panel, by default the number of panelists in the original panel
- **centerbypanelist**: boolean, if T center the data by panelist before the construction of the axes
scalebypanelist

boolean, if T scale the data by panelist before the construction of the axes (by default, FALSE is assigned to that parameter)

name.panelist

boolean, if T then the name of each panelist is displayed on the plotpanelist graph (by default, FALSE is assigned to that parameter)

cex

cf. function `par` in the `graphics` package

color

a vector with the colors used; by default there are 35 colors defined

hierar

hierarchy in the variable (see `hmfa`)

Value

A list containing the following elements:

eig

a matrix with the component of the factor analysis (in row) and the eigenvalues, the inertia and the cumulative inertia for each component

coordinates

a list with: the coordinates of the products with respect to the panel and to each panelists and the coordinates of the partial products with respect to the panel and to each panelists

hotelling

Returns a matrix with the P-values of the Hotelling’s T2 tests for each pair of products: this matrix allows to find the product which are significantly different for the 2-components sensory description

Returns a graph of the products as well as a correlation circle of the descriptors.

Returns a graph where each product is displayed with respect to a panel and to each panelist composing the panel; products described by the panel are displayed as square, they are displayed as circle when they are described by each panelist.

Returns a graph where each product is circled by its confidence ellipse generated by virtual panels. When a Multiple Factor Analysis is performed, returns a graph where each partial product is circled by its confidence ellipse generated by virtual panels.

Author(s)

François Husson

References

See Also

`panellipse`, `panellipse.session`
Examples

```r
## Not run:
data(chocolates)
Panel1=sensochoc[as.numeric(sensochoc[,1])<11,]
Panel2=sensochoc[as.numeric(sensochoc[,1])<21 & as.numeric(sensochoc[,1])>10,]
Panel3=sensochoc[as.numeric(sensochoc[,1])>20,]
res <- panelmatch(list(P1=Panel1,P2=Panel2,P3=Panel3), col.p = 4, col.j = 1, firstvar = 5)
## End(Not run)
```

panelperf
Panel's performance according to its capabilities to discriminate between products

Description

Computes automatically P-values associated with the F-test as well as the residual term for a given analysis of variance model.

Usage

```r
panelperf(donnee, formul, subset = NULL, firstvar, lastvar = ncol(donnee), random = TRUE)
```

Arguments

- **donnee**: a data frame
- **formul**: the model that is to be tested
- **subset**: cf. function `lm` in the `stats` package
- **firstvar**: the position of the first endogenous variable
- **lastvar**: the position of the last endogenous variable (by default the last column of `donnee`)
- **random**: boolean, effect should be possible as fixed or random (default as random)

Details

The `formul` parameter must be filled in by an analysis of variance model and must begin with the categorical variable of interest (e.g. the product effect) followed by the different other factors of interest (and their combinations). E.g.: `formul = "~Product+Session"`.

Value

A list containing the following components:

- **p.value**: a matrix of dimension \((k,m)\) of *P-values* associated with the F-test for the \(k\) descriptors and the \(m\) factors and their combinations considered in the analysis of variance model of interest
variability a matrix of dimension \((k,m)\) where the entries correspond to the percentages of variability due to the effects introduced in the analysis of variance model of interest

res a vector of dimension \(k\) of residual terms for the analysis of variance model of interest

r2 a vector of dimension \(k\) of r-squared for the analysis of variance model of interest

Author(s)
François Husson, Sébastien Lê

References
H. Sahai, M. I. Ageel. The analysis of variance.

See Also
paneliperf, aov

Examples
```
data(chocolates)
res=panelperf(sensochoc, firstvar = 5, formul = "~Product+Panelist+
Session+Product:Panelist+Session:Product+Panelist:Session")
## Sort results by product p.values.
coltable(magicsort(res$p.value, sort.mat = res$p.value[,1], bycol = FALSE,
    method = "median"), main.title = "Panel performance (sorted by product P-value)")
```

Description
The data used here refer to 12 luxury perfumes categorized by 30 consumers.

Usage
data(perfume)

Format
A data frame with 12 rows (the number of perfumes) and 30 columns (the number of consumers): a cell corresponds either to the number of the group to which the product belongs for the consumer, or, in the case of "qualified" categorization, to the sequence of words associated with the group to which the product belongs for the consumer.
Source
Applied Mathematics Department, AGROCAMPUS OUEST Centre de Rennes

Examples

```r
## Not run:
data(perfume)
## Example of FAST
res.fast <- fast(perfume)
## End(Not run)
```

<table>
<thead>
<tr>
<th>perfume_fcp</th>
<th>Perfume data obtained by free choice profiling</th>
</tr>
</thead>
</table>

Description
The data used here refer to 12 luxury perfumes described by 6 experts.

Usage
data(perfume_fcp)

Format
A data frame with 12 rows (the number of perfumes) and 47 columns.

Examples

```r
## Not run:
data(perfume_fcp)
res <- fcp(perfume_fcp, group = c(12,7,7,6,8))
## End(Not run)
```

<table>
<thead>
<tr>
<th>plot.fahst</th>
<th>Make Factorial Approach for Hierarchical Sorting Task data (FAHST) graphs</th>
</tr>
</thead>
</table>

Description
Plot the graphs for Factorial Approach for Hierarchical Sorting Task data (FAHST).
Usage

S3 method for class 'fahst'
plot(x, choix = "ind", axes = c(1, 2), xlim = NULL, ylim = NULL, invisible = NULL,
col.ind = "blue", col.var = "red", lab.ind = TRUE, lab.var = TRUE, cex = 1,
lab.lev = TRUE, lab.grpe = TRUE, title = NULL, habillage = "none", habillage.lev = "none",
traj = FALSE, palette = NULL, new.plot = TRUE, ...)

Arguments

- **x**: an object of class fahst
- **choix**: the graph to plot ("ind" for the products and the categories, "group" for the consumers and "level" for the levels)
- **axes**: a length 2 vector specifying the components to plot
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **invisible**: string indicating if some points should not be drawn ("ind" or "var")
- **col.ind**: a color for the products
- **col.var**: a color for the categories
- **lab.ind**: boolean, if TRUE, the products are labelled
- **lab.var**: boolean, if TRUE, the categories associated with categorization are labelled
- **cex**: cf. function `par` in the `graphics` package
- **lab.lev**: boolean, if TRUE, the levels are labelled
- **lab.grpe**: boolean, if TRUE, the consumers are labelled
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **habillage**: give no color for the individuals ("none"), or color the products according to one of the levels of a consumer (give the number of the column corresponding to the level)
- **habillage.lev**: give no color for the levels ("none"), color the levels according to consumer ("subject") or color the levels according to the number of the level ("level")
- **traj**: boolean, if TRUE, trajectories are drawn between levels of the same consumer
- **palette**: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: `palette=palette(c("black","red","blue"));` or you can use: `palette=palette(rainbow(30)),` or in black and white for example: `palette=palette(gray(seq(0,.9,len=25)))`
- **new.plot**: boolean, if TRUE, a new graphical device is created
- **...**: further arguments passed to or from other methods

Value

Returns the products factor map, the categories factor map, the levels factor map and the consumers factor map.
plot.fasnt

Make Factorial Approach for Sorting Napping Task data (FASNT) graphs

Description

Plot the graphs for Factorial Approach for Sorting Napping Task data (FASNT).

Usage

```
## S3 method for class 'fasnt'
plot(x, choix = "ind", axes = c(1, 2), xlim = NULL, ylim = NULL, invisible = NULL,
col.ind = "blue", col.var = "red", lab.ind = TRUE, lab.var = TRUE, lab coord = TRUE, lab.partial = TRUE,
cex = 1, lab.grpe = TRUE, title = NULL, habillage = "none", palette = NULL,
new.plot = TRUE, ...)
```

Arguments

- **x**: an object of class fast
- **axes**: a length 2 vector specifying the components to plot
- **choix**: the graph to plot ("ind" for the products and the categories, "group" for the consumers and "partial" for the partial products)
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **habillage**: give no color for the individuals ("none"), or color the products among a consumer (give the number of the consumer)
- **col.ind**: a color for the products

Examples

```r
## Not run:
data(cards)
group <- c(2,3,2,2,4,2,3,2,3,3,2,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3)res.fahst <- fahst(cards, group, graph = FALSE)
plot.fahst(res.fahst, choix = "ind", invisible = "var", habillage = 2, title = "Cards colored according to level 2 of subject")
plot.fahst(res.fahst, choix = "level", traj = TRUE)
## End(Not run)
```
plot.fasnt

- `col.var` a color for the categories
- `lab.ind` boolean, if TRUE, the products are labelled
- `lab.var` boolean, if TRUE, the categories associated with categorization are labelled
- `lab.coord` boolean, if TRUE, the napping variables are labelled
- `lab.partial` boolean, if TRUE, the partial products are labelled
- `invisible` string indicating if some points should not be drawn ("ind" or "var")
- `cex` cf. function `par` in the `graphics` package
- `lab.grpe` boolean, if TRUE, the consumers are labelled
- `title` string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- `palette` the color palette used to draw the points. By default colors are chosen. If you want to define the colors: `palette=palette(c("black","red","blue"));` or you can use: `palette=palette(rainbow(30))`, or in black and white for example: `palette=palette(gray(seq(0,.9,len=25)))`
- `new.plot` boolean, if TRUE, a new graphical device is created
- ... further arguments passed to or from other methods

Value

Returns the products factor map, the categories factor map, the coordinates factor map and the consumers factor map.

Author(s)

Marine Cadoret, Sébastien Lé <sebastien.le@agrocampus-ouest.fr>

See Also

`fasnt`

Examples

```r
## Not run:
data(smoothies)
res.fasnt <- fasnt(smoothies, first="nappe", graph=FALSE)
plot.fasnt(res.fasnt, choix="ind", invisible="var", habillage=15,
   title="Objects colored according to the groups provided by consumer 5")
plot.fasnt(res.fasnt, choix="partial", lab.partial=FALSE)
## End(Not run)
```
plot.fast

Make Factorial Approach for Sorting Task data (FAST) graphs

Description

Plot the graphs for Factorial Approach for Sorting Task data (FAST).

Usage

```r
## S3 method for class 'fast'
plot(x, choix = "ind", axes = c(1, 2), xlim = NULL, ylim = NULL, invisible = NULL,
     col.ind = "blue", col.var = "red", col.quali.sup = "darkred",
     col.ind.sup = "darkblue", col.quanti.sup = "black", label = "all",
     cex = 1, lab.grpe = TRUE, title = NULL, habillage = "none", palette = NULL,
     new.plot = TRUE, ...)```

Arguments

- `x`: an object of class fast
- `axes`: a length 2 vector specifying the components to plot
- `choix`: the graph to plot ("ind" for the products, "var" for the categories, "group" for the consumers)
- `xlim`: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- `ylim`: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- `habillage`: give no color for the individuals ("none"), or color the products among a consumer (give the number of the consumer)
- `col.ind`: a color for the products
- `col.var`: a color for the categories
- `col.quali.sup`: a color for the supplementary categories
- `col.ind.sup`: a color for the supplementary individuals
- `col.quanti.sup`: a color for the quantitative supplementary variables
- `label`: a list of character for the elements which are labelled (by default, all the elements are labelled ("ind", "var"))
- `invisible`: string indicating if some points should not be drawn ("ind" or "var")
- `cex`: cf. function `par` in the `graphics` package
- `lab.grpe`: boolean, if TRUE, the consumers are labelled
- `title`: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- `palette`: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: `palette=palette(c("black","red","blue"))`; or you can use: `palette=palette(rainbow(30))`, or in black and white for example: `palette=palette(gray(seq(0,.9,len=25)))`
- `new.plot`: boolean, if TRUE, a new graphical device is created
- `...`: further arguments passed to or from other methods
Value

Returns the products factor map, the categories factor map and the consumers factor map.

Author(s)

Marine Cadoret, Sébastien Le <sebastien.le@agrocampus-ouest.fr>

See Also

fast

Examples

## Not run:
data(perfume)
res.fast <- fast(perfume, graph=FALSE)
plot.fast(res.fast, choix="ind", invisible="var", habillage=5)
plot.fast(res.fast, choix="group")
## End(Not run)

plotpanelist

### Plotpanelist

Displays panelists' sensory profiles onto the products' space

#### Usage

```r
plotpanelist(mat, coord = c(1,2), name = FALSE, eig, cex = 1, color = NULL)
```

#### Arguments

- **mat**: a data frame structured as the first element of the list resulting from the function `construct.axes`, i.e. the coordinates of the products with respect to the panel and to each panelists
- **coord**: a length 2 vector specifying the components to plot
- **name**: boolean, if T then the name of each panelist is displayed on the graph (by default, FALSE is assigned to that parameter)
- **eig**: a matrix with the component of the factor analysis (in row) and the eigenvalues, the inertia and the cumulative inertia for each component. Typically, the `eig` output of the `construct.axes` function
- **cex**: cf. function `par` in the `graphics` package
- **color**: a vector with the colors used; by default there are 35 colors defined
pmfa

**Value**

Returns a graph where each product is displayed with respect to a panel and to each panelist composing the panel. Products described by the panel are displayed as square, they are displayed as circle when they are described by each panelist.

**Author(s)**

François Husson

**Examples**

```r
data(chocolates)
donnee <- cbind.data.frame(sensochoc[,c(1,4,5:18)])
axe <- construct.axes(donnee, scale.unit = TRUE)
plotpanelist(axe$moyen, eig = signif(axe$eig,4))
```

---

**pmfa**

*Procrustean Multiple Factor Analysis (PMFA)*

**Description**

Performs Multiple Factor Analysis combined with Procrustean Analysis.

**Usage**

```r
pmfa(matrice, matrice.illu = NULL, mean.conf = NULL, dilat = TRUE,
 graph.ind = TRUE, graph.mfa = TRUE, lim = c(60,40), coord = c(1,2), cex = 0.8)
```

**Arguments**

- `matrice` a data frame of dimension \((p,2j)\), where \(p\) represents the number of products and \(j\) the number of panelists
- `matrice.illu` a data frame with illustrative variables (with the same row.names in common as in `matrice`)
- `mean.conf` coordinates of the average configuration (by default NULL, the average configuration is generated by MFA)
- `dilat` boolean, if TRUE (which is the default value) the Morand’s dilatation is used
- `graph.ind` boolean, if TRUE (which is the default value) superimposes each panelist’s configuration on the average configuration
- `graph.mfa` boolean, if TRUE (which is the default value) and if `mean.conf = NULL` the graphs of the MFA are drawn
- `lim` size of the tablecothe
- `coord` a length 2 vector specifying the components to plot
- `cex` cf. function `par` in the `graphics` package
Details

Performs first Multiple Factor Analysis on the tableclothes, then GPA in order to superimpose as well as possible panelist’s configuration on the average configuration obtained by MFA (in the case where mean.conf is NULL). If mean.conf is not NULL the configuration used is the one input by the user.

Value

Returns the RV coefficient between each individual configuration and the consensus.
If mean.conf is NULL (and graph.mfa is TRUE), returns the usual graphs resulting from the MFA function: the graph of the individuals and their partial representations, the graph of the variables (i.e. the coordinates of the products given by each panelist).
If mean.conf is not NULL returns the configuration input by the user.
When matrice.illu is not NULL, returns a graph of illustrative variables.
Returns as many superimposed representations of individual configurations as there are panelists.

Author(s)

François Husson, Sébastien Lê

References

Morand, E., Pagès, J. Procrustes multiple factor analysis to analyze the overall perception of food products. *Food Quality and Preference* 14, 182-188.

See Also

MFA, nappeplot, indscal

Examples

```R
Not run:
data(napping)
nappeplot(napping.don)
x11()
pmfa(napping.don, napping.words)
End(Not run)
```

print.fahst

Print Factorial Approach for Hierarchical Sorting Task data (FAHST) results.

Description

Print Factorial Approach for Hierarchical Sorting Task data (FAHST) results.
print.fasnt

Print Factorial Approach for Sorting Napping Task data (FASNT) results

Description

Print Factorial Approach for Sorting Napping Task data (FASNT) results.

Usage

## S3 method for class 'fasnt'
print(x, file = NULL, sep = ",", ...)
### print.fast

**Print Factorial Approach for Sorting Task data (FAST) results**

#### Description

Print Factorial Approach for Sorting Task data (FAST) results.

#### Usage

```r
S3 method for class 'fast'
print(x, file = NULL, sep = ";", ...)
```

#### Arguments

- `x`: an object of class fast
- `file`: A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file
- `sep`: character string to insert between the objects to print (if the argument file is not NULL)
- `...`: further arguments passed to or from other methods

#### Author(s)

Marine Cadoret, Sébastien Lé <sebastien.le@agrocampus-ouest.fr>

#### See Also

- `fasnt`

#### Examples

```r
Not run:
data(smoothies)
res.fasnt <- fasnt(smoothies, first="nappe",graph=F)
print.fasnt(res.fasnt, file="c:/fasnt.csv", sep = ";")
End(Not run)
```
scalebypanelist

Description

Returns a data frame with entries the means of the products over the sessions for the whole panel and for each panelist.

Usage

```
scalebypanelist(matrice, center = TRUE, scale = FALSE, col.p, col.j, firstvar, lastvar = ncol(matrice), method = "coeff")
```

Arguments

- **matrice**: a data frame made up of at least two qualitative variables (`product`, `panelist`) and a set of quantitative variables (sensory descriptors)
- **center**: boolean, if T scores given by panelists are centered
- **scale**: boolean, if T scores given by panelists are scaled to unit variance
- **col.p**: the position of one categorical variables of interest (the `product` variable)
- **col.j**: the position of one categorical variables of interest (the `panelist` variable)
- **firstvar**: the position of the first endogenous variable
- **lastvar**: the position of the last endogenous variable (by default the last column of `donnee`)
- **method**: the method to replace the missing values: "average" or "coeff" (coefficients of the `product` variable in the anova model)
search.desc

Value

Returns a data frame of dimension \((p*(1+j),k+2)\), where \(p\) is the number of products, \(j\) the number of panelists, and \(k\) the number of sensory descriptors (the first two variables correspond to the panelist and the product variables). This data frame contains the means of the products over the sessions for the whole panel and for each panelist (data may be scaled to unit variance or not, this parameter is set by users).

Author(s)

François Husson

Examples

data(chocolates)
res=scalebypanelist(sensochoc, col.p = 4, col.j = 1, firstvar = 5)
res

Description

This function is designed to select the significant descriptors in a data frame

Usage

search.desc(matrice, col.j, col.p, firstvar, lastvar = ncol(matrice), level = 0.5)

Arguments

matrice a data frame made up of at least two qualitative variables (product, panelist) and a set of quantitative variables (sensory descriptors)
col.j the position of the categorical variable which make the variability, panelist for sensory studies. The value of col.j can also be NULL if no categorical variables make the variability.
col.p the position of the categorical variable of interest, product for sensory studies
firstvar the position of the first endogenous variable
lastvar the position of the last endogenous variable (by default the last column of donnee)
level the threshold (P-value) below which variables are considered as discriminating for the following analysis of variance model: descriptor=col.p*col.j

Value

Returns a data frame with all the qualitative variables and only discriminating variables
Author(s)

François Husson

Examples

data(chocolates)
## In this example, all the descriptors are discriminated
interesting.desc <- search.desc(sensochoc, col.j = 1, col.p = 4,
   firstvar = 5, level = 0.5)

Description

The data used here refer to the sensory description of 16 cocktails. Each cocktail was evaluated by 12 panelists according to 13 sensory descriptors (only the average of each cocktail are given).

Usage

data(cocktail)

Format

A data frame with 16 rows and 13 columns: each cocktail was evaluated by 12 panelists according to 13 sensory descriptors.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

data(cocktail)
Description

The data used here refer to the sensory description of six varieties of chocolates sold in France: each chocolate was evaluated twice by 29 panelists according to 14 sensory descriptors.

Usage

data(chocolates)

Format

A data frame with 348 rows and 19 columns: 5 qualitative variables (Panelist, Session, Form, Rank, Product) and 14 sensory descriptors.

Source

Département de mathématiques appliquées, Agrocampus Rennes

Examples

data(chocolates)
decat(sensochoc, formul = "-Product+Panelist", firstvar = 5, graph = FALSE)

Description

The data used here refer to six varieties of chocolates sold in France. Each chocolate was evaluated by 7 panels according to 14 sensory descriptors.

Usage

data(chocolates)

Format

A data frame with 6 rows and 98 columns: each row corresponds to a chocolate and each column to the mean over the panelists of a given panel according to a sensory descriptor.

Source

Département de mathématiques appliquées, Agrocampus Rennes
Examples

data(chocolates)

smoothies

Description

The data used here refer to 8 smoothies on which 24 consumers performed a sorted napping task.

Usage

data(smoothies)

Format

A data frame with 8 rows (the number of smoothies) and 72 columns (the number of consumers * 3). For each consumer, we have the coordinates of the products on the tablecloth associated with napping on the one hand and the partitionning variable associated with categorization on the other hand. The columns are grouped by consumer.

Source

Département de mathématiques appliquées, AGROCAMPU S OUEST Centre de Rennes

Examples

## Not run:
data(smoothies)
## Example of FASNT
res.fasnt<-fasnt(smoothies,first="nappe")
## End(Not run)

triangle.design

Construct a design for triangle tests

Description

Construct a design to make triangle tests.

Usage

triangle.design (nbprod , nbpanelist, bypanelist = nbprod+(nbprod-1)/2, 
labprod=1:nbprod, labpanelist=1:nbpanelist)
Arguments

nbprod  number of products to compare
nbpanelist  number of panelists who make the triangle test
bypanelist  number of experiment that each panelist can done (by default each panelist make all the comparisons between the products
labprod  name of the products (by default, the product are coded from 1 to the number of products
labpanelist  name of the panelists (by default, the panelists are coded from 1 to the number of panelists

Details

Triangle test: panelists receive three coded samples. They are told that two of the sample are the same and one is different. Panelists are asked to identify the odd sample.

Value

Returns an data.frame of dimension \((t,3)\), where \(t\) is the number of experiments. In column 1, 2 and 3 the product to test are given. The product in column 1 is by coded “X”, in column 2 is coded by “Y” and in column 3 is coded by “Z”. Panelist should start by product “X”, then “Y” and then by “Z”.

Author(s)

François Husson

See Also

triangle.test, triangle.pair.test

Examples

```r
#Example 1
design1 = triangle.design (nbprod = 4, nbpanelist = 8)

#Example 2
design2 = triangle.design(nbprod = 4, nbpanelist = 6, bypanelist = 3,
labprod=c("prod1","prod2","prod3","prod4"),
labpanelist=c("John","Audrey","Peter","Martina","James","Lisa"))
```
triangle.pair.test  Make a Triangle test for two products

Description
Make a Triangle test for two products.

Usage
triangle.pair.test (nb.good, nb.answer)

Arguments
nb.good  number of panelists who identify the odd sample
nb.answer  number of panelists who make the triangle test

Details
Triangle test: panelists receive three coded samples. They are told that two of the sample are the same and one is different. Panelists are asked to identify the odd sample.

Value
Returns
p.value  the p-value of the Triangle test;
Estimation  estimation by Maximum Likelihood of the number of panelists who really perceive the difference between the products;
ML  Maximum Likelihood of the estimation of the number of panelists who really perceive the difference between the products;
minimum  minimum of panelists who should detect the odd product to can say that panelists perceive the difference between the products.

Author(s)
François Husson

See Also
triangle.test, triangle.design

Examples
triangle.pair.test (11, 20)
triangle.test

Make a Triangle test for a set of products

Description

Make a Triangle test for a set of products.

Usage

triangle.test (design, answer, preference = NULL)

Arguments

design  a data.frame corresponding to the design use to make the Triangle test (typically the output of the function triangle.design
answer a vector of the answers of all the panelists; all the answer should be "X", "Y" or "Z"
preference a vector of the preference of the panelists; all the answer should be "X", "Y" or "Z" (by default, there preference are not taken into account)

Details

Triangle test: panelists receive three coded samples. They are told that two of the sample are the same and one is different. Panelists are asked to identify the odd sample.

Value

Returns a list of matrices. Each matrix give the result for all the pair of products:

nb.comp a matrix with the number of comparisons done for each pair of products;
nb.ident a matrix with the number of panelists who indicate the odd product for each pair of products;
p.value a matrix with the p-value of the Triangle tests for each pair of products;
nb.recognition estimation of the panelists who really perceived the difference between two product, for each pair of product;
maxML Maximum Likelihood of the estimation of the number of panelists who really perceive the difference between the products;
confusion estimation of the percentage of panelists who do not perceived the difference between two product, for each pair of product;
minimum minimum of panelists who should detect the odd product to can say that panelists perceive the difference between the products, for each pair of products;
preference number of times that product of row i is prefered that product in column j for the panelists who find the odd product.
Author(s)
François Husson

See Also
triangle.pair.test, triangle.design

Examples
design = triangle.design(nbprod = 4, nbpanelist = 6, bypanelist = 3)
answer = c("X","Y","Y","X","Z","X","Y","X","Z",
           "X","X","Z","X","Y","X","Z","X","Y")
triangle.test (design, answer)
Index

*Topic color
  coltable, 16
*Topic datasets
  cards, 10
  chocolates, 15
  cocktail, 15
  compo.cocktail, 18
  hedo.cocktail, 32
  hedochoc, 32
  napping, 41
  napping.don, 41
  napping.words, 42
  perfume, 55
  perfume_fcp, 56
  senso.cocktail, 68
  sensochoc, 69
  sensopanels, 69
  smoothies, 70
*Topic dplot
  boot, 7
  fcp, 29
  plot.fahst, 56
  plot.fasnt, 58
  plot.fast, 60
*Topic manip
  magicsort, 37
  scalebypanelist, 66
*Topic math
  optimaldesign, 43
*Topic models
  averagetable, 4
  carto, 11
  cartoconsumer, 13
  decat, 22
  graphinter, 30
  interact, 36
  panelperf, 44
  panelperf, 54
  search.desc, 67
  triangle.design, 70
  triangle.pair.test, 72
  triangle.test, 73
*Topic multivariate
  boot, 7
  carto, 11
  cartoconsumer, 13
  construct.axes, 19
  cpa, 21
  fahst, 24
  fasnt, 26
  fast, 27
  fcp, 29
  hsortplot, 34
  indscal, 35
  nappesortplot, 39
  panellipse, 46
  panellipse.session, 49
  panelmatch, 52
  plotpanelist, 61
  pmfa, 62
*Topic print
  print.fahst, 63
  print.fasnt, 64
  print.fast, 65
*Topic segmentation
  cartoconsumer, 13
*Topic univar
  ardi, 3
  barrow, 6
  boxprod, 9
  histprod, 33
  aov, 5, 24, 31, 37, 46, 55
  ardi, 3
  averagetable, 4
  barrow, 6
  boot, 7
INDEX

boxplot, 9
boxprod, 9
bxp, 9

cards, 10
carto, 11, 14
cartoconsumer, 13
chocolates, 15
cocktail, 15
coltable, 16
compo.cocktail, 18
construct.axes, 19
cpa, 21
decat, 4, 22
density, 33

fahst, 24, 34, 58, 64
fasnt, 26, 40, 59, 65
fast, 27, 61, 66
fcp, 29

GPA, 12, 14
graphinter, 30

hedo.cocktail, 32
hedorochoc, 32
hist, 33
histprod, 33
hsortplot, 34

indscal, 35, 39, 63
interact, 36

lm, 54

magicsort, 37
MFA, 12, 14, 20, 63

nappeplot, 36, 38, 63
nappesortplot, 39
napping, 39, 41
napping.don, 41
napping.words, 42

optimaldesign, 43

panelperf, 44, 55
panellipse, 46, 51, 53
panellipse.session, 49, 49, 53
panelmatch, 49, 52

par, 7, 11, 17, 29, 47, 50, 53, 57, 59–62
perfume, 55
perfume_fcp, 56
plot, 6
plot.fahst, 56
plot.fasnt, 58
plot.fast, 60
plotpanelist, 61
pmfa, 36, 39, 62
print.fahst, 63
print.fasnt, 64
print.fast, 65

scalebypanelist, 66
search.desc, 67
senso.cocktail, 68
sensochoc, 69
sensopanels, 69
smoothies, 70
stripchart, 9

triangle.design, 70, 72, 74
triangle.pair.test, 71, 72, 74
triangle.test, 71, 72, 73