Package ‘RFLPtools’

February 15, 2013

Type Package

Title Tools to analyse RFLP data

Version 1.5

Date 2013-01-04

Author Fabienne Flessa, Alexandra Kehl, Matthias Kohl

Maintainer Matthias Kohl <Matthias.Kohl@stamats.de>

Description RFLPtools provides functions to analyse DNA fragment samples (i.e. derived from RFLP-analysis) and standalone BLAST report files (i.e. DNA sequence analysis).

Depends R(>= 2.10.0), stats, utils, graphics, grDevices, RColorBrewer

Suggests lattice, MKmisc(>= 0.8)

License LGPL-3

Repository CRAN

Date/Publication 2013-01-04 20:22:06

NeedsCompilation no

R topics documented:

RFLPtools-package .. 2
BLASTdata .. 3
diffDist .. 4
linCombDist .. 6
nrBands ... 7
read.blast .. 8
read.rflp ... 9
RFLPcombine .. 10
RFLPdata ... 11
RFLPtools-package

Tools to analyse RFLP-data

Description

RFLPtools provides functions to analyse DNA fragment samples (i.e. derived from RFLP-analysis) and standalone BLAST report files (i.e. DNA sequence analysis).

Details

- Package: RFLPtools
- Version: 1.5
- Date: 2013-01-04
- Depends: R(>= 2.10.0), stats, utils, grDevices, RColorBrewer
- Suggests: lattice, MKmisc(>= 0.8)
- License: LGPL-3

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

Maintainer: Matthias Kohl <Matthias.Kohl@stamats.de>

References

Poussier, Stephane; Trigalet-Demery, Danielle; Vandewalle, Peggy; Goffinet, Bruno; Luisetti, Jacques; Trigalet, Andre. Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 2000 146:1679-1692

Matsumoto, Masaru; Furuya, Naruto; Takanami, Yoichi; Matsuyama, Nobuaki. RFLP analysis of the PCR-amplified 28S rDNA in Rhizoctonia solani. Mycoscience 1996 37:351 - 356

Examples

data(RFLPdata)
res <- RFLPdist(RFLPdata)
plot(hclust(res[[1]]), main = “Euclidean distance”)
par(mfrow = c(1,2))
plot(hclust(RFLPdist(RFLPdata, nrBands = 3)), cex = 0.7)
RFLPplot(RFLPdata, nrBands = 3, mar.bottom = 6, cex.axis = 0.8)
data(RFLPref)
RFLPrefplot(RFLPdata, RFLPref, nrBands = 6, cex.axis = 0.8)

library(MKmisc)
data(BLASTdata)
res <- simMatrix(BLASTdata, sequence.range = TRUE, Min = 500)
myCol <- colorRampPalette(brewer.pal(8, “RdYlGn”))(128)
simPlot(res, col = myCol, minVal = 0,
 labels = colnames(res), title = “(Dis-)Similarity Plot”)

<table>
<thead>
<tr>
<th>BLASTdata</th>
<th>Example data set for BLAST data</th>
</tr>
</thead>
</table>

Description

This is an example data set for BLAST data generated with standalone BLAST from NCBI.

Usage

data(RFLPdata)

Format

A data frame with 737 observations on the following four variables

query.id character: sequence identifier.
subject.id character: subject identifier.
identity numeric: identity between sequences (in percent).
alignment.length integer: number of nucleotides.
mismatches integer: number of mismatches.
gap.opens integer: number of gaps.
q.start integer: query sequence start.
q.end integer: query sequence end.
s.start integer: subject sequence start.
s.end integer: subject sequence end.
evalue numeric: evalue.
bit.score numeric: score value.

Details
The data was generated with standalone BLAST from NCBI. Pairwise similarities of DNA sequences are calculated among all sequences to analyse applying Standalone Blast with the parameters -m 8 -r 2 -G 5 -E 2.
Alternative data can be generated with "local BLAST" implemented in BioEdit v7.0.9 using the additional parameters -m 8 -r 2 -G 5 -E 2 and by selecting "open output" and "tabular output".

Source
The data set was generated by F. Flessa.

References
BioEdit v7.0.9: Tom Hall, Ibis Biosciences; http://www.mbio.ncsu.edu/BioEdit/bioedit.html

Examples
data(BLASTdata)
str(BLASTdata)

diffDist Distance Matrix Computation

Description
This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix. Instead of the row values as in the case of dist, the successive differences of the row values are used.
diffDist

Usage

diffDist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

Arguments

x a numeric matrix, data frame or "dist" object.
method the distance measure to be used. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
diag logical value indicating whether the diagonal of the distance matrix should be printed by print.dist.
upper logical value indicating whether the upper triangle of the distance matrix should be printed by print.dist.
p The power of the Minkowski distance.

Details

This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix. Instead of the row values as in the case of dist, the successive differences of the row values are used.

It's a simple wrapper function around dist. For more details about the distances we refer to dist.

The function may be helpful, if there is a shift w.r.t. the measured bands; e.g. \(c(550, 500, 300, 250) \) vs. \(c(510, 460, 260, 210) \).

Value

diffDist returns an object of class "dist"; cf. dist.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

assume a shift in the measured bands
M <- rbind(c(550, 500, 300, 250), c(510, 460, 260, 210),
 c(550, 500, 300, 200))
dist(M)
diffDist(M)
linCombDist

Linear Combination of Distances

Description
This function computes linear combinations of distances.

Usage
linCombDist(x, distfun1, w1, distfun2, w2, diag = FALSE, upper = FALSE)

Arguments
- **x**: object which is passed to distfun1 and distfun2.
- **distfun1**: function used to compute an object of class "dist".
- **w1**: weight for result of distfun1.
- **distfun2**: function used to compute an object of class "dist".
- **w2**: weight for result of distfun2.
- **diag**: see dist
- **upper**: see dist

Details
This function computes and returns the distance matrix computed by a linear combination of two distance matrices.

Value
linCombDist returns an object of class "dist"; cf. dist.

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>

Examples
```r
## assume a shift in the measured bands
M <- rbind(c(550, 500, 300, 250), c(510, 460, 260, 210),
           c(700, 650, 450, 400), c(550, 490, 310, 250))
dist(M)
diffDist(M)

## convex combination of dist and diffDist
linCombDist(M, distfun1 = dist, w1 = 0.5, distfun2 = diffDist, w2 = 0.5)

## linear combination
linCombDist(M, distfun1 = dist, w1 = 2, distfun2 = diffDist, w2 = 5)
```
nrBands

Function to compute number of bands.

Description

Computes groups based on the number of bands per sample in a RFLP data set. Each group comprises RFLP-samples with equal number of bands.

Usage

nrBands(x)

Arguments

x data.frame with RFLP data; see RFLPdata.

Details

The function computes groups based on the number of bands per sample in a RFLP data set. Each group comprises RFLP-samples with equal number of bands.

Value

Number of bands per RFLP-samples.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPdata, RFLPdist2, dist
Examples

```r
data(RFLPdata)
nrBands(RFLPdata)
```

Description

Function to read BLAST data generated with standalone BLAST from NCBI.

Usage

```r
read.blast(file, sep = "\t")
```

Arguments

- `file`: character: BLAST file to read in.
- `sep`: the field separator character. Values on each line of the file are separated by this character. Default "\t".

Details

The function reads data which was generated with standalone BLAST from NCBI; see ftp://ftp.ncbi.nih.gov/blast/executables/release/

Possible steps:
1) Install NCBI BLAST
2) Generate and import database(s)
3) Apply BLAST with options `outfmt` and `out`; e.g.
   ```bash
   blastn -query Testquery -db Testdatabase -outfmt 6 -out out.txt
   ```
 or
   ```bash
   blastn -query Testquery -db Testdatabase -outfmt 10 -out out.csv
   ```

One can also call BLAST from inside R by using function `system`

```r
system("blastn -query Testquery -db Testdatabase -outfmt 6 -out out.txt")
```

4) Read in the results

```r
test.res <- read.blast(file = "out.txt")
```

or

```r
test.res <- read.blast(file = "out.csv", sep = ",")
```

Value

A `data.frame` with variables

- `query.id` character: sequence identifier.
- `subject.id` character: subject identifier.
- `identity` numeric: identity between sequences (in percent).
- `alignment.length` integer: number of nucleotides.
read.rflp

mismatches integer: number of mismatches.
gap.opens integer: number of gaps.
q.start integer: query sequence start.
q.end integer: query sequence end.
s.start integer: subject sequence start.
s.end integer: subject sequence end.
evalue numeric: evalue.
bit.score numeric: score value.

Author(s)
Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

References

See Also
BLASTdata, simMatrix

Examples
Dir <- system.file("exdata", package = "RFLPtools") # input directory
filename <- file.path(Dir, "BLASTexample.txt")
BLAST1 <- read.blast(file = filename)
str(BLAST1)

Description
Function to read RFLP data (e.g. generated with software package Gene Profiler 4.05 (Scanalytics Inc.)) for DNA fragment analysis and genotyping, and exported to a text file.

Usage
read.rflp(file)

Arguments
file character: RFLP file to read in.
Details

The function reads data from a text file which was generated e.g. with the software package Gene Profiler 4.05 (Scanalytics Inc.) for DNA fragment analysis and genotyping. The data file contains sample identifier (Sample), band number (Band), molecular weight (MW) and gel identifier (Gel) (see RFLPdata).

If gel identifier Gel is missing it is extracted from the sample identifier Sample.

Value

A data.frame with variables

Sample character: sample identifier.
Band integer: band number.
MW integer: molecular weight.
Gel character: gel identifier.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPdata, RFLPdist

Examples

Dir <- system.file("extdata", package = "RFLPtools") # input directory
filename <- file.path(Dir, "RFLPexample.txt")
RFLP1 <- read.rflp(file = filename)
str(RFLP1)

filename <- file.path(Dir, "AZ091016_report.txt")
RFLP2 <- read.rflp(file = filename)
str(RFLP2)

RFLPcombine

Combine RFLP data sets

Description

Function to combine an arbitrary number of RFLP data sets.

Usage

RFLPcombine(...)
Arguments

... two or more data.frames with RFLP data.

Details

The data sets are combined using `rbind`.

If data sets with identical sample identifiers are given, the identifiers are made unique using `make.unique`.

Value

A data.frame with variables

- Sample character: sample identifier.
- Band integer: band number.
- MW integer: molecular weight.
- Gel character: gel identifier.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPdata

Examples

```r
data(RFLPdata)
res <- RFLPcombine(RFLPdata, RFLPdata, RFLPdata)
RFLPplot(res, nrBands = 4)
```

RFLPdata

Example data set for RFLP data

Description

This is an example data set for RFLP data.

Usage

data(RFLPdata)
Format
 A data frame with 737 observations on the following four variables
 Sample character: sample identifier.
 Band integer: band number.
 MW integer: molecular weight.
 Gel character: gel identifier.

Details
 The molecular weight was determined using the software package Gene Profiler 4.05 (Scanalytics Inc.) for DNA fragment analysis and genotyping, and exported to a text file.

Source
 The data set was generated by F. Flessa.

Examples
 data(RFLPdata)
 str(RFLPdata)

RFLPdist

Compute distances for RFLP data.

Description
 Within each group containing RFLP-samples exhibiting a equal number of bands, the distance between the molecular weights is computed.

Usage
 RFLPdist(x, distfun = dist, nrBands)

Arguments
 x data.frame with RFLP data; see RFLPdata.
 distfun function computing the distance with default dist; cf. dist.
 nrBands if not missing, then only samples with the specified number of bands are considered.

Details
 For each number of bands the given distance between the molecular weights is computed. The result is a named list of distances where the names correspond to the number of bands which occur in each group.
 If nrBands is specified only samples with this number of bands are considered.
RFLPdist

Value

A named list with the distances; see dist.
In case nrBands is not missing, an object of S3 class dist.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

References

Poussier, Stephane; Trigalet-Demery, Danielle; Vandewalle, Peggy; Goffinet, Bruno; Luisetti, Jacques; Trigalet, Andre. Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hpr gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 2000 146:1679-1692
Matsumoto, Masaru; Furuya, Naruto; Takanami, Yoichi; Matsuyama, Nobuaki. RFLP analysis of the PCR-amplified 28S rDNA in Rhizoctonia solani. Mycoscience 1996 37:351 - 356

See Also

RFLPdata, dist

Examples

Euclidean distance
data(RFLPdata)
res <- RFLPdist(RFLPdata)
names(res) # number of bands
res$"6"
RFLPdist(RFLPdata, nrBands = 6)

Other distances
res1 <- RFLPdist(RFLPdata, distfun = function(x) dist(x, method = "manhattan"))
res2 <- RFLPdist(RFLPdata, distfun = function(x) dist(x, method = "maximum"))
res[[1]]
res1[[1]]
res2[[1]]

cut dendrogram at height 50
clust4bd <- hclust(res[[2]])
cgroups50 <- cutree(clust4bd, h=50)
cgroups50

or
library(MKmisc)
res3 <- RFLPdist(RFLPdata, distfun = corDist)
res3$"9"
hierarchical clustering

```r
par(mfrow = c(2,2))
plot(hclust(res[[1]]), main = "Euclidean distance")
plot(hclust(res[[1]]), main = "Manhattan distance")
plot(hclust(res2[[1]]), main = "Maximum distance")
plot(hclust(res3[[1]]), main = "Pearson correlation distance")
```

Similarity matrix

```r
library(MKmisc)
myCol <- colorRampPalette(brewer.pal(8, "RdYlGn"))(128)
ord <- order.dendrogram(as.dendrogram(hclust(res[[1]])))
temp <- as.matrix(res[[1]])
simPlot(temp[ord,ord], col = rev(myCol), minVal = 0,
       labels = colnames(temp), title = "(Dis-)Similarity Plot")
```

or

```r
library(lattice)
levelplot(temp[ord,ord], col.regions = rev(myCol),
at = do.breaks(c(0, max(temp)), 128),
xlab = "", ylab = "",
## Rotate label of x axis
scales = list(x = list(rot = 90)),
main = "(Dis-)Similarity Plot")
```

multidimensional scaling

```r
loc <- cmdscale(res[[5]])
x <- loc[,1]
y <- -loc[,2]
plot(x, y, type="n", xlab="", ylab="", xlim = 1.05*range(x), main="Multidimensional scaling")
text(x, y, rownames(loc), cex=0.8)
```

RFLPdist2

Compute distances for RFLP data.

Description

If gel image quality is low, faint bands may be disregarded and may lead to wrong conclusions. This function computes the distance between the molecular weights of RFLP samples, including samples containing one or more additional bands. Thus, failures during band detection could be identified. Visualisation of band patterns using this method can be done by `RFLPplot` using the argument `nrMissing`.

Usage

```r
RFLPdist2(x, distfun = dist, nrBands, nrMissing, LOD,
          diag = FALSE, upper = FALSE)
```
Arguments

x data.frame with RFLP data; see RFLPdata.
distfun function computing the distance with default dist; cf. dist.
.nrBands samples with number of bands equal to .nrBands are to be considered.
.nrMissing number of bands that might be missing.
.LOD threshold for low-bp bands.
diag see dist
.upper see dist

Details

For a given number of bands the given distance between the molecular weights is computed. It is assumed that a number of bands might be missing. Hence all samples with number of bands in .nrBands, .nrBands+1, ..., .nrBands+.nrMissing are compared.

If .LOD is specified, it is assumed that missing bands can only occur for molecular weights smaller than .LOD. As a consequence only samples which have .nrBands bands with molecular weight larger or equal to .LOD are selected.

For computing the distance between the molecular weight of a sample S1 with x bands and a Sample S2 with x+y bands the distances between the molecular weight of sample S1 and the molecular weight of all possible subsets of S2 with x bands are computed. The distance between S1 and S2 is then defined as the minimum of all these distances.

If .LOD is specified, only all combinations of values below .LOD are considered.

This option may be useful, if gel image quality is low, and the detection of bands is doubtful.

Value

An object of class "dist" returned; cf. dist.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

References

See Also

RFLPdata, .nrBands, RFLPdist, dist
Examples

```r
## Euclidean distance
data(RFLPdata)
nrBands(RFLPdata)
res0 <- RFLPdist(RFLPdata, nrBands = 4)
res1 <- RFLPdist2(RFLPdata, nrBands = 4, nrMissing = 1)
res2 <- RFLPdist2(RFLPdata, nrBands = 4, nrMissing = 2)
res3 <- RFLPdist2(RFLPdata, nrBands = 4, nrMissing = 3)

## assume missing bands only below LOD
res1.lod <- RFLPdist2(RFLPdata, nrBands = 4, nrMissing = 1, LOD = 6/0)

## hierarchical clustering
par(mfrow = c(2,2))
plot(hclust(res0), main = "0 bands missing")
plot(hclust(res1), main = "1 band missing")
plot(hclust(res2), main = "2 bands missing")
plot(hclust(res3), main = "3 bands missing")

## missing bands only below LOD
par(mfrow = c(1,2))
plot(hclust(res0), main = "0 bands missing")
plot(hclust(res1.lod), main = "1 band missing below LOD")

## Similarity matrix
library(MKmisc)
myCol <- colorRampPalette(brewer.pal(8, "RdYlGn")(128)
ord <- order.dendrogram(as.dendrogram(hclust(res1)))
temp <- as.matrix(res1)
simPlot(temp[ord,ord], col = rev(myCol), minVal = 0,
   labels = colnames(temp), title = "(Dis-)Similarity Plot")

## missing bands only below LOD
ord <- order.dendrogram(as.dendrogram(hclust(res1.lod)))
temp <- as.matrix(res1.lod)
simPlot(temp[ord,ord], col = rev(myCol), minVal = 0,
       labels = colnames(temp), title = "(Dis-)Similarity Plot\n1 band missing below LOD")

## or
library(lattice)
levelplot(temp[ord,ord], col.regions = rev(myCol),
  at = do.breaks(c(0, max(temp)), 128),
  xlab = "", ylab = "",
  ## Rotate label of x axis
  scales = list(x = list(rot = 90)),
  main = "(Dis-)Similarity Plot")

## Other distances
res11 <- RFLPdist2(RFLPdata, distfun = function(x) dist(x, method = "manhattan"),
   nrBands = 4, nrMissing = 1)
```
res12 <- RFLPdist2(RFLPdata, distfun = corDist, nrBands = 4, nrMissing = 1)
res13 <- RFLPdist2(RFLPdata, distfun = corDist, nrBands = 4, nrMissing = 1, LOD = 6/0)
par(mfrow = c(2,2))
plot(hclust(res1), main = "Euclidean distance\n1 band missing")
plot(hclust(res11), main = "Manhattan distance\n1 band missing")
plot(hclust(res12), main = "Pearson correlation distance\n1 band missing")
plot(hclust(res13), main = "Pearson correlation distance\n1 band missing below LOD")

RFLPdist2ref

Compute distance between RFLP data and RFLP reference data.

Description

Function to compute distance between RFLP data and RFLP reference data.

Usage

```r
RFLPdist2ref(x, ref, distfun = dist, nrBands)
```

Arguments

- `x` data.frame with RFLP data; e.g. `RFLPdata`.
- `ref` data.frame with RFLP reference data; e.g. `RFLPref`.
- `distfun` function computing the distance with default `dist`; cf. `dist`.
- `nrBands` only samples and reference samples with this number of bands are considered.

Details

For each sample with `nrBands` bands the distance to each reference sample with `nrBands` bands is computed. The result is a matrix with the corresponding distances where rows represent the samples and columns the reference samples.

Value

A matrix with distances.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

`RFLPdata, dist`
Examples

```r
## Euclidean distance
data(RFLPdata)
data(RFLPref)
nrBands(RFLPref)
RFLPdist2ref(RFLPdata, RFLPref, nrBands = 4)
RFLPdist2ref(RFLPdata, RFLPref, nrBands = 6)

Dir <- system.file("extdata", package = "RFLPtools") # input directory
filename <- file.path(Dir, "AZ091016_report.txt")
RFLP1 <- read.rflp(file = filename)
RFLP2 <- RFLPqc(RFLP1)
nrBands(RFLP2)
RFLPdist2ref(RFLP1, RFLPref, nrBands = 4)
RFLPdist2ref(RFLP1, RFLPref, nrBands = 5)
```

RFLPlo
d

Remove bands below LOD

Description

Function to exclude bands below a given LOD.

Usage

```
RFLPlo(x, LOD)
```

Arguments

- **x**: data.frame with RFLP data.
- **LOD**: threshold for low-bp bands.

Details

Low-bp bands may be regarded as unreliable. Function RFLPlo can be used to exclude such bands, which are likely to be absent in some other samples, before further analyses.

Value

A data.frame with variables

- Sample: character: sample identifier.
- Band: integer: band number.
- MW: integer: molecular weight.
- Gel: character: gel identifier.
Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPdata

Examples

data(RFLPdata)
remove bands with MW smaller than 60
RFLPdata.lod <- RFLPlod(RFLPdata, LOD = 60)
par(mfrow = c(1, 2))
RFLPplot(RFLPdata, nrBands = 4, ylim = c(40, 670))
RFLPplot(RFLPdata.lod, nrBands = 4, ylim = c(40, 670))
title(sub = "After applying RFLPlod")

RFLPplot

Function to plot RFLP data.

Description

Given RFLP data is plotted where the samples are sorted according to the corresponding dendrogram.

Usage

RFLPplot(x, nrBands, nrMissing, distfun = dist,
hclust.method = "complete", mar.bottom = 5,
cex.axis = 0.5, colBands, xlab = "",
ylab = "molecular weight", ylim, ...)

Arguments

x
data.frame with RFLP data; see RFLPdata.
nrBands
if not missing, then only samples with the specified number of bands are considered.
nrMissing
if not missing, then it is assumed that some bands may be missing. That is, all samples with number of bands in nrBands, nrBands+1, ..., nrBands+nrMissing are considered.
distfun
function computing the distance with default dist; see dist.
hclust.method
method used for hierarchical clustering; see hclust.
mar.bottom
bottom margin of the plot; see par.
cex.axis
size of the x-axis annotation.
colBands color for the bands. Has to be of length 1 or number of samples. If missing, "Set1" of RColorBrewer is used; see brewer.pal.
xlab passed to function plot.
ylab passed to function plot.
ylim passed to function plot. If missing an appropriate range of y-values is computed.
... additional arguments passed to function plot except xlim which is defined inside of RFLPplot.

Details

RFLP data is plotted. The samples are sorted according to the corresponding dendrogram which is computed via function hclust.

The option to specify nrMissing may be useful, if gel image quality is low, and the detection of bands is doubtful.

Value

invisible

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPdata, dist

Examples

data(RFLPdata)
par(mfrow = c(1,2))
plot(hclust(RFLPdist(RFLPdata, nrBands = 3)), cex = 0.7)
RFLPplot(RFLPdata, nrBands = 3, mar.bottom = 6, cex.axis = 0.8)

par(mfrow = c(1,2))
plot(hclust(RFLPdist2(RFLPdata, nrBands = 9, nrMissing = 1)), cex = 0.7)
RFLPplot(RFLPdata, nrBands = 9, nrMissing = 1, mar.bottom = 6, cex.axis = 0.8)

distfun <- function(x) dist(x, method = "maximum")
par(mfrow = c(1,2))
plot(hclust(RFLPdist(RFLPdata, nrBands = 3, distfun = distfun),
method = "average"), cex = 0.7, cex.lab = 0.7)
RFLPplot(RFLPdata, nrBands = 3, distfun = distfun, hclust.method = "average",
mar.bottom = 6, cex.axis = 0.8)
RFLPqc

Quality control for RFLP data

Description
Function to perform quality control for RFLP data based on a comparison between the total length
of the digested PCR amplification product and the sum of the fragment lengths. If the sum is smaller
or larger than the PCR amplification product (within a certain range to define), the samples can be
excluded from further analyses. This function is helpful for data sets containing faint or uncertain
bands. It is necessary to include the total length of the PCR amplification product for each sample
as largest fragment in the data set, see RFLPdata.

Usage
RFLPqc(x, rm.band1 = TRUE, QC.lo = 0.8, QC.up = 1.07, QC.rm = FALSE)

Arguments
x data.frame with RFLP data.
rm.band1 logical: remove first band.
QC.lo numeric: a real number in (0,1).
QC.up numeric: a real number larger than 1.
QC.rm logical: remove samples with insufficient quality.

Details
In case the first band corresponds to the total length of the fragment one can perform a quality
control comparing the length of the first band with the sum of the lengths of the remaining bands
for each sample. If the sum is smaller than QC.lo times the length of the first band or larger than
QC.up times the length of the first band, respectively, a text message is printed.
If rm.band1 = TRUE band 1 of all samples is removed and the remaining band numbers are reduced
by 1.
If QC.rm = TRUE samples of insufficient quality are entirely removed from the given data and the
resulting data.frame is returned.

Value
A data.frame with variables
Sample character: sample identifier.
Band integer: band number.
MW integer: molecular weight.
Gel character: gel identifier.
Example data set for RFLP reference

Description

This is an example data set for RFLP reference.

Usage

data(RFLPdata)

Format

A data frame with 35 observations on the following five variables

Sample character: sample identifier.
Band integer: band number.
MW integer: molecular weight.
Taxonname character: taxon name.
Accession character: accession number.
Details

This example data set for RFLP reference consists of seven RFLP reference samples. Taxon names are assigned by sequence comparison with GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/), and supplemented with imaginary accession numbers.

Source

The data set was generated by F. Flessa.

Examples

data(RFLPref)
str(RFLPref)

RFLPrefplot
Function for a visual comparison of RFLP samples with reference samples.

Description

Given RFLP samples are plotted together with reference samples and sorted by their distance to the reference sample.

Usage

RFLPrefplot(x, ref, distfun = dist, nrBands, mar.bottom = 5,
cex.main = 1.2, cex.axis = 0.5, devNew = FALSE,
colBands, xlab = "", ylab = "molecular weight",
ylim, ...)

Arguments

x data.frame with RFLP data; e.g. RFLPdata.
ref data.frame with RFLP reference data; e.g. RFLPref.
distfun function computing the distance with default dist; see dist.
nrBands if not missing, then only samples with the specified number of bands are considered.
mar.bottom bottom margin of the plot; see par.
cex.main size of the plot title.
cex.axis size of the x-axis annotation.
devNew logical. Open new graphics device for each plot.
colBands color for the bands. Has to be of length 1 or number of samples. If missing, "Set1" of RColorBrewer is used; see brewer.pal.
xlab passed to function plot.
Details

Given RFLP samples are plotted together with reference samples and sorted by their distance to the reference sample.

Value

invisible

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

RFLPplot

Examples

```r
data(RFLPdata)  
data(RFLPref)  
dev.new(width = 12)  
RFLPrefplot(RFLPdata, RFLPref, nrBands = 4, cex.axis = 0.5)

dev.new()  
RFLPrefplot(RFLPdata, RFLPref, nrBands = 6, cex.axis = 0.8)  
RFLPrefplot(RFLPdata, RFLPref, nrBands = 9, cex.axis = 0.8)

RFLPrefplot(RFLPdata, RFLPref[RFLPref$Sample == "Ni_29_A3",], nrBands = 4, cex.axis = 0.7)

Dir <- system.file("extdata", package = "RFLPtools") # input directory  
filename <- file.path(Dir, "AZ201016_report.txt")  
RFLP1 <- read.rflp(file = filename)  
RFLP2 <- RFLPqc(RFLP1)

dev.new(width = 12)  
RFLPrefplot(RFLP1, RFLPref, nrBands = 4, cex.axis = 0.8)

dev.new()  
RFLPrefplot(RFLP1, RFLPref, nrBands = 5, cex.axis = 0.8)
```
sim2dist

Convert similarity matrix to dist object.

Description

Function to convert similarity matrix to object of S3 class "dist".

Usage

`sim2dist(x, maxSim = 1)`

Arguments

- `x` symmetric matrix: similarity matrix.
- `maxSim` maximum similarity possible.

Details

Similarity is converted to distance by `maxSim - x`. The resulting matrix is converted to an object of S3 class "dist" by `as.dist`.

Value

Object of S3 class "dist" is returned; see `dist`.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

`BLASTdata, simMatrix`

Examples

```r
data(BLASTdata)

## without sequence range
## Not run:
res <- simMatrix(BLASTdata)

## End(Not run)

## with sequence range
range(BLASTdata$alignment.length)
res1 <- simMatrix(BLASTdata, sequence.range = TRUE, Min = 100, Max = 450)
res2 <- simMatrix(BLASTdata, sequence.range = TRUE, Min = 500)
```
visualize similarity matrix

```r
library(MKmisc)
simPlot(res2, minVal = 0,
        labels = colnames(res2), title = "(Dis-)Similarity Plot")
```

or

```r
library(lattice)
myCol <- colorRampPalette(brewer.pal(8, "RdYlGn"))(128)
levelplot(res2, col.regions = myCol,
         at = do.breaks(c(0, max(res2)), 128),
         xlab = "", ylab = "",
         # Rotate label of x axis
         scales = list(x = list(rot = 90)),
         main = "(Dis-)Similarity Plot")
```

convert to distance

```r
res.d <- sim2dist(res2)
```

hierarchical clustering

```r
plot(hclust(res.d))
```

simMatrix

Simularity matrix for BLAST data.

Description

Function to compute similarity matrix for all-vs-all BLAST results of rDNA sequences generated with standalone BLAST from NCBI or local BLAST implemented in BioEdit.

Usage

```r
simMatrix(x, sequence.range = FALSE, Min, Max)
```

Arguments

- **x**: data.frame with BLAST data; see `BLASTdata`.
- **sequence.range**: logical: use sequence range.
- **Min**: minimum sequence length.
- **Max**: maximum sequence length.

Details

The given BLAST data is used to compute a similarity matrix using the following algorithm: First, the length of each sequence (LS) comprised in the input data file is extracted. If there is more than one comparison for one sequence including different parts of the respective sequence, that one with maximum base length is chosen. Subsequently, the number of matching bases (mB) is
calculated by multiplying two variables comprised in the BLAST output: the identity between sequences (%) and the number of nucleotides divided by 100. The, resulting value is rounded to integer. Furthermore, the similarity is calculated by dividing mB by LS. Finally, the similarity matrix including all sequences is built. If the similarity of a combination is not shown in the BLAST report file (because the similarity was lower than 70%), this comparison is included in the similarity matrix with the result zero.

Value

Similarity matrix.

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>, Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

References

BioEdit v7.0.9: Tom Hall, Ibis Biosciences; http://www.mbio.ncsu.edu/BioEdit/bioedit.html

See Also

BLASTdata, sim2dist

Examples

```r
data(BLASTdata)

## without sequence range
## code takes some time
## Not run:
res <- simMatrix(BLASTdata)

## End(Not run)

## with sequence range
range(BLASTdata$alignment.length)
res1 <- simMatrix(BLASTdata, sequence.range = TRUE, Min = 100, Max = 450)
res2 <- simMatrix(BLASTdata, sequence.range = TRUE, Min = 500)
```
write.hclust | Cut a hierarchical cluster tree and write cluster identifiers to a text file.

Description

The tree obtained by a hierarchical cluster analysis is cut into groups by using `cutree` and the results are exported to a text file.

Usage

```r
write.hclust(x, file, prefix, h = NULL, k = NULL, append = FALSE, dec = ",")
```

Arguments

- `x`: object of class `hclust`: result of hierarchical cluster analysis computed via function `hclust`.
- `file`: either a character string naming a file or a connection open for writing. "" indicates output to the console.
- `prefix`: character. Information about the cluster analysis.
- `h`: numeric scalar or vector with heights where the tree should be cut.
- `k`: an integer scalar or vector with the desired number of groups.
- `append`: logical. Only relevant if `file` is a character string. If `TRUE`, the output is appended to the file. If `FALSE`, any existing file of the name is destroyed.
- `dec`: the string to use for decimal points in numeric or complex columns: must be a single character.

Details

The results are written to file by a call to `write.table` where the columns in the resulting file are separated by tabulators (i.e. `sep="\t"`) and no row names are exported (i.e. `row.names = FALSE`).

Author(s)

Fabienne Flessa <Fabienne.Flessa@uni-bayreuth.de>,
Alexandra Kehl <Alexandra.Kehl@botgarten.uni-tuebingen.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

`write.table`, `cutree`
Examples

```r
data(RFLPdata)
res <- RFLPdist(RFLPdata, nrBands = 4)
cl <- hclust(res)
write.hclust(cl, file = "Test.txt", prefix = "Bd4", h = 50)

res <- RFLPdist2(RFLPdata, nrBands = 4, nrMissing = 1)
cl <- hclust(res)
write.hclust(cl, file = "Test.txt", append = TRUE, prefix = "Bd4_Mis1", h = 60)
```
Index

*Topic cluster
 RFLPdist, 12
 RFLPdist2, 14
 RFLPdist2ref, 17
 RFLPplot, 19
 RFLPtools-package, 2
 sim2dist, 25
 simMatrix, 26

*Topic connection
 read.blast, 8
 read.rflp, 9
 write.hclust, 28

*Topic datasets
 BLASTdata, 3
 RFLPdata, 11
 RFPLod, 22

*Topic file
 read.blast, 8
 read.rflp, 9
 write.hclust, 28

*Topic manip
 RFLPcombine, 10
 RFLPlod, 18
 RFLPqc, 21

*Topic multivariate
 diffDist, 4
 linCombDist, 6
 nrBands, 7
 RFLPdist, 12
 RFLPdist2, 14
 RFLPdist2ref, 17
 RFLPplot, 19
 RFLPprefplot, 23
 RFLPtools-package, 2
 sim2dist, 25
 simMatrix, 26

*Topic package
 RFLPtools-package, 2

BLASTdata, 3, 9, 25–27

brewer.pal, 20, 23

cutree, 28

diffDist, 4

dist, 4–7, 12, 13, 15, 17, 19, 20, 23, 25

hclust, 19, 28

linCombDist, 6

make.unique, 11

nrBands, 7, 15

par, 19, 23

plot, 20, 23, 24

rbind, 11

read.blast, 8

read.rflp, 9

RFLPcombine, 10

RFLPdata, 7, 10, 11, 11, 12, 13, 15, 17, 19–23

RFLPdist, 10, 12, 15, 22

RFLPdist2, 12, 14

RFLPdist2ref, 17

RFLPlod, 18

RFLPplot, 14, 19, 24

RFLPqc, 21

RFLPref, 17, 22, 23

RFLPprefplot, 23

RFLPtools(RFLPtools-package), 2

RFLPtools-package, 2

sim2dist, 25, 27

simMatrix, 9, 25, 26

write.hclust, 28

write.table, 28