Package ‘GenOrd’

February 15, 2013

Type Package

Title Simulation of ordinal and discrete variables with given correlation matrix and marginal distributions

Version 1.0.1

Date 2012-03-31

Author Alessandro Barbiero, Pier Alda Ferrari

Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it>

Description The package implements a procedure for generating samples from ordinal/discrete random variables with pre-specified correlation matrix and marginal distributions.

License GPL

LazyLoad yes

Depends mvtnorm, Matrix, MASS

Repository CRAN

Date/Publication 2012-04-06 16:14:16

NeedsCompilation no

R topics documented:

GenOrd-package .. 2
contord .. 3
corrcheck .. 4
ordcont .. 5
ordsample .. 7

Index 10
Description

The package implements a procedure for generating samples from ordinal/discrete random variables with pre-specified correlation matrix and marginal distributions. It is developed in two steps: the first step (function `ordcont`) sets up the original continuous variables in order to achieve the final discrete/ordinal variables meeting the experimental conditions; the second step (`ordsample`) generates samples from the adjusted original variables and discretizes them, thus simulating samples from the target variables. The procedure can handle both Pearson’s correlation and Spearman’s rho, and any finite support for the discrete variables. The intermediate function `contord` computes the correlations of discrete/ordinal variables derived from correlated normal variables through discretization. Function `corrcheck` returns the lower and upper bounds of the correlation coefficients of ordinal/discrete variables given their marginal distributions, i.e. returns the range of feasible pairwise correlations.

Details

Package: GenOrd
Type: Package
Version: 1.0
Date: 2012-03-27
License: GPL
LazyLoad: yes

Author(s)

Alessandro Barbiero, Pier Alda Ferrari Maintainer: Alessandro Barbiero <alessandro.barbiero@unimi.it>

References

P.A. Ferrari, A. Barbiero: Simulating ordinal data, Multivariate Behavioral Research, forthcoming

See Also

`contord, ordcont, corrcheck, ordsample`
Correlations of discretized variables

Description
The function computes the correlation matrix of the \(k \) variables, with given marginal distributions, derived discretizing a \(k \)-variate standard normal variable with given correlation matrix.

Usage
\[
\text{contord(\text{marginal, Sigma, support = list(), Spearman = FALSE})}
\]

Arguments
- \text{marginal} a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of \text{marginal} is the vector of the cumulative probabilities defining the marginal distribution of the \(i \)-th component of the multivariate variable. If the \(i \)-th component has \(k_i \) categories, the \(i \)-th element of \text{marginal} will contain \(k_i - 1 \) probabilities (the \(k_i \)-th is obviously 1).
- \text{Sigma} the correlation matrix of the standard multivariate normal variable
- \text{support} a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of \text{support} contains the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \).
- \text{Spearman} if TRUE, the function finds Spearman's correlations (and it is not necessary to provide \text{support}), if FALSE (default) Pearson's correlations

Value
the correlation matrix among the discretized variables

Author(s)
Alessandro Barbiero, Pier Alda Ferrari

See Also
\text{ordcont, ordsample, corrcheck}

Examples
\[
\begin{align*}
\text{# consider 4 discrete variables} \\
k<-4 \\
\text{# with these marginal distributions} \\
marginal<-\text{list(0.4,c(0.3,0.6),c(0.25,0.5,0.75),c(0.1,0.2,0.8,0.9))} \\
\text{# generated discretizing a multivariate standard normal variable} \\
\text{# with correlation matrix} \\
\text{Sigma<-matrix(0.6,4,4)}
\end{align*}
\]
diag(Sigma) <- 1
the resulting correlation matrix for the discrete variables is
contord(marginal, Sigma)
note all the correlations are smaller than the original 0.6
change Sigma, adding a negative correlation
Sigma[1, 2] <- -.2
Sigma[2, 1] <- Sigma[1, 2]
Sigma
contord(marginal, Sigma)

corrcheck

Checking correlations

Description

Function corrcheck returns the lower and upper bounds of the correlation coefficients of the ordinal/discrete variables given their marginal distributions, i.e. returns the range of feasible pairwise correlations.

Usage

corrcheck(marginal, support = list(), Spearman = FALSE)

Arguments

marginal
 a list of k elements, where k is the number of variables. The i-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the i-th component of the multivariate variable. If the i-th component has k_i categories, the i-th element of marginal will contain $k_i - 1$ probabilities (the k_i-th is obviously 1).
support
 a list of k elements, where k is the number of variables. The i-th element of support contains the ordered values of the support of the i-th variable. By default, the support of the i-th variable is $1, 2, ..., k_i$
Spearman
 TRUE if we consider Spearman’s correlation, FALSE (default) if we consider Pearson’s correlation

Value

The functions returns a list of two matrices: the former contains the lower bounds, the latter the upper bounds of the feasible correlations (on the extra-diagonal elements)

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

contord, ordcont, ordsample
Examples

```r
# four variables
k<-4
# with 2, 3, 4, and 5 categories (Likert scales, by default)
kj<-c(2,3,4,5)
# and these marginal distributions (set of cumulative probabilities)
marginal<-list(c(0,0.6,0.9),c(0.1,0.2,0.4),c(0.6,0.7,0.8,0.9))
corrcheck(marginal) # lower and upper bounds for Pearson's rho
corrcheck(marginal, Spearman=TRUE) # lower and upper bounds for Spearman's rho
# change the support
support<-list(c(0,1),c(1,2,4),c(1,2,3,4),c(0,1,2,5,10))
corrcheck(marginal, support=support) # updated bounds
```

Description

The function computes the correlation matrix of the k-dimensional standard normal r.v. yielding the desired correlation matrix identified by Sigma for the k-dimensional r.v. with desired marginal distributions marginal.

Usage

```r
ordcont(marginal, Sigma, support=list(), Spearman=FALSE, epsilon=1e-6, maxit=100)
```

Arguments

- `marginal`: a list of `k` elements, where `k` is the number of variables. The `i`-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the `i`-th component of the multivariate variable. If the `i`-th component has `k_i` categories, the `i`-th element of marginal will contain `k_i - 1` probabilities (the `k_i`-th is obviously 1).
- `Sigma`: the target correlation matrix of the ordinal/discrete variables
- `support`: a list of `k` elements, where `k` is the number of variables. The `i`-th element of support contains the ordered values of the support of the `i`-th variable. By default, the support of the `i`-th variable is `1, 2, ..., k_i`
- `Spearman`: if TRUE, the function finds Spearman's correlations (and it is not necessary to provide support), if FALSE (default) Pearson's correlations
- `epsilon`: the maximum tolerated error among target and actual correlations
- `maxit`: the maximum number of iterations of the algorithm
Value

a list of four elements

- \(\text{SigmaC} \) the correlation matrix of the multivariate standard normal variable
- \(\text{SigmaO} \) the actual correlation matrix of the discretized variables (it should approximately coincide with the target correlation matrix in input!)
- \(\text{Sigma} \) the target correlation matrix of the ordinal/discrete variables
- \(\text{niter} \) the number of iterations performed
- \(\text{maxerr} \) the actual maximum error (the absolute maximum deviation between actual and target correlations of the ordinal/discrete variables)

Note

The value of the maximum tolerated absolute error \(\epsilon \) on the elements of the correlation matrix for ordinal r.v. can be set by the user: a value between 0.000001 and 0.01 seems to be an acceptable compromise assuring both the precision of the results and the convergence of the algorithm; moreover, a maximum number of iteration can be chosen (\(\text{maxit} \)), in order to avoid possible endless loops in case of non-convergence

Author(s)

Alessandro Barbiero, Pier Alda Ferrari

See Also

- \text{contord}, \text{ordsample}, \text{corrcheck}

Examples

```r
# consider a 4-dimensional ordinal variable
k<-4
# with different number of categories
kj<-c(2,3,4,5)
# and uniform marginal distributions
marginal<-list(0.5,c(1/3,2/3),c(1/4,2/4,3/4),c(1/5,2/5,3/5,4/5))
corrcheck(marginal)
# and the following correlation matrix
Sigma<-matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1),4,4,byrow=TRUE)
Sigma
# the correlation matrix of the standard 4-dimensional standard normal
# ensuring Sigma is
res<-ordcont(marginal, Sigma)
res[[1]]
# change some marginal distributions
marginal<-list(0.3,c(1/3,2/3),c(1/5,2/5,3/5),c(0.1,0.2,0.4,0.6))
corrcheck(marginal)
# and notice how the correlation matrix of the multivariate normal changes...
res<-ordcont(marginal, Sigma)
res[[1]]
# change Sigma, adding a negative correlation
```
orsample

Sigma[1,2]<-0.2
Sigma[2,1]<-Sigma[1,2]
Sigma
res<--ordcont(marginal, Sigma)
res[[1]]

orsample Drawing a sample of ordinal/discrete data

Description

The function draws a sample of given size from a multivariate ordinal/discrete variable with correlation matrix Sigma and pre-specified marginals marginal

Usage

orsample(n, marginal, Sigma, support=list(), Spearman=FALSE, cormat="ordinal")

Arguments

n the sample size
marginal a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the \(i \)-th component of the multivariate variable. If the \(i \)-th component has \(k_i \) categories, the \(i \)-th element of marginal will contain \(k_i - 1 \) probabilities (the \(k_i \)-th is obviously 1).
Sigma the target correlation matrix of the ordinal/discrete variables
support a list of \(k \) elements, where \(k \) is the number of variables. The \(i \)-th element of support contains the ordered values of the support of the \(i \)-th variable. By default, the support of the \(i \)-th variable is \(1, 2, \ldots, k_i \).
Spearman if TRUE, the function finds Spearman’s correlations (and it is not necessary to provide support), if FALSE (default) Pearson’s correlations
cormat "ordinal" if the Sigma in input is the target correlation matrix of ordinal/discrete variables; "continuous" if the Sigma in input is the intermediate correlation matrix of the multivariate standard normal to be discretized

Value

a \(n \times k \) matrix of discrete/ordinal data drawn from the \(k \)-variate discrete/ordinal r.v. with the desired marginal distributions and correlation matrix

Author(s)

Alessandro Barbiero, Pier Alda Ferrari
See Also

contord, ordcont, corrcheck

Examples

Example 1

draw a sample from a bivariate ordinal variable
with 4 of categories and asymmetrical marginal distributions
and correlation coefficient 0.6 (to be checked)
k<-2
marginal<-list(c(0.1,0.3,0.6),c(0.4,0.7,0.9))
corrcheck(marginal) # check ok
Sigma<-matrix(c(1,0.6,0.6,1),2,2)
sample size 100
n<-500
generate a sample of size n
m<-ordsample(n, marginal, Sigma)
head(m)
sample correlation matrix
cor(m) # compare it with Sigma
table(m[,1])/sum(table(m[,1]))
table(m[,2])/sum(table(m[,2])) # compare it with the two marginal distributions

Example 2

draw a sample from a 4-dimensional ordinal variable
with different number of categories
and uniform marginal distributions, and different correlation coefficients
k<-4
marginal<-list(0.5,c(1/3,2/3),c(1/4,2/4,3/4),c(1/5,2/5,3/5,4/5))
corrcheck(marginal)
select a feasible correlation matrix
Sigma<-matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1),4,4,byrow=TRUE)
Sigma
sample size 100
n<-100
generate a sample of size n
set.seed(1)
m<-ordsample(n, marginal, Sigma)
sample correlation matrix
cor(m) # compare it with Sigma
table(m[,4]) # compare it with the fourth marginal
head(m)
or equivalently...
set.seed(1)
res<-ordcont(marginal, Sigma)
res[[1]] # the intermediate correlation matrix of the multivariate normal
m<-ordsample(n, marginal, res[[1]], cormat="continuous")
head(m)
increasing n, the sample correlations get close to
the theoretical correlations
and the empirical marginal distributions get closer to
the theoretical marginal distribution
Index

*Topic datagen
contord, 3
ordcont, 5
ordsample, 7

*Topic distribution
contord, 3
corrcheck, 4
ordcont, 5
ordsample, 7

*Topic htest
contord, 3
corrcheck, 4
ordcont, 5
ordsample, 7

*Topic models
contord, 3
corrcheck, 4
ordcont, 5
ordsample, 7

*Topic package
GenOrd-package, 2
contord, 2, 3, 4, 6, 8
corrcheck, 2, 3, 4, 6, 8
GenOrd-package, 2
ordcont, 2–4, 5, 8
ordsample, 2–4, 6, 7