Package ‘CvM2SL2Test’
February 15, 2013

Version 2.0-1
Date 2012-01-02
Title Cramer-von Mises Two Sample Tests
Author Yuanhui Xiao <yxiao@gsu.edu>
Maintainer Yuanhui Xiao <yxiao@gsu.edu>

Description The package contains two functions: one computes the
Cramer-von Mises two sample test scores, the other computes the
exact p-value(s) for given Cramer-von Mises two-sample test
score(s) under the assumption that the populations under
comparison have the same probability distribution. Like
Kolmogorov-Smirnov two-sample test, Cramer-von Mises test is
also distribution free. In certain cases, the Cramer-von Mises
test is more powerful than the Kolmogorov-Smirnov test, but it is less widely used than the latter.

License GPL-2
Repository CRAN
Date/Publication 2012-01-03 06:32:57
NeedsCompilation yes

R topics documented:
cvmts.pval ... 2
cvmts.test ... 4

Index 5
Computing Exact P-value for Cramer-von Mises Two Sample Tests

Description

The Cramer-von Mises two sample test is to test whether two independent samples were drawn from the same population. The function `cvmts.pval()` evaluates the p-value for given test statistic.

Usage

`cvmts.pval(cvmstats, m, n)`

Arguments

- `cvmstats`: an R object holding a list of computed Cramer-von Mises test scores.
- `m`: sample size of the first sample.
- `n`: sample size of the second sample.

Value

The returned value the p-value(s)

Note

The function `cvmts.pval()` first construct the distribution function, which is represented as sequence of tables in my implementation. This step may be slow, depending the sample sizes n and m as well as the capacity of the computer. Once the distribution function is established, the function uses convolution operation to compute the p-value(s) for given Cramer-von Mises test statistics. So, if you have a sequence of pairs of samples of the same sample sizes n and m, it is best to compute the test scores for all pairs of samples, and then call this function. If you compute the p-values separetely, the process may be slow.

Author(s)

Yuanhui Xiao, Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, 30302 <yxiao@gwu.edu>

References

See Also

`cvmts.pval`
Examples

```r
## sample size of the first sample
n <- 10

## create a sample x of size n from the normal distribution with mean 0 and
## standard deviation 1
x <- rnorm(n, 0, 1)

## sample size of the second sample
m <- 10

## create a sample y of size m from the normal distribution with mean 1 and
## standard deviation 1
y <- rnorm(m, 1, 1)

## compute the Cramer-von Mises test statistic
cvm <- cvmts.test(x, y)

## compute the p-value for the test.
pval <- cvmts.pval(cvm, n, m)

## Now suppose x is a list of samples of the same size (n), and y is a list
## of samples of the same size (m), and you want to test whether each pair
## (x[i], y[i]) were drawn from the same population, for i = 1, 2, ...

## a bad way to use cvmts.pval()
##
## for(i <- 1; i<=length(x); i++){
##
##   cvm <- cvmts.test(x[i], y[i])
##   pval <- cvmts.pval(cvm, n, m)
##
## }

## Why? In each call to the function cvmts.pval(), in the first step established is
## the distribution of the Cramer-von Mises test statistics under the
## assumption that the two sample were drawn from the same population. Then
## the distribution is used to calculate the p-value. The first step may
## be expensive if the sample sizes n and m are large.

## I prefer the following way

## initialize
# cvms <- seq(1, length(x))

## compute test scores
# for(i <- 1; i<=length(x); i++){
#   cvms[i] <- cvmts.test(x[i], y[i])
# }

## compute p-values
# pvals <- cvmts.pval(cvms, n, m)
```
Description

The Cramer-von Mises two sample test is to test whether two independent samples were drawn from the same population.

Usage

cvmts.test(x, y)

Arguments

x an R object for the first sample, which is a vector
y an R object for the second sample, which is also a vector

Value

score of the Cramer-von Mises two-sample test for given samples

Author(s)

Yuanhui Xiao, Department of Mathematics and Statistics Georgia State University Atlanta, GA 30302 <yxiao@gsu.edu>

See Also

cvmts.test

Examples

create a sample x of size 10 from the normal distribution with mean 0 and standard deviation 1
x <- rnorm(10, 0, 1)

create a sample y of size 10 from the normal distribution with mean 1 and standard deviation 1
y <- rnorm(10, 1, 1)

Call the function to get the Cramer-von Mises test statistic
cvm <- cvmts.test(x, y)
Index

*Topic *nonparametric
 cvmts.pval, 2
 cvmts.test, 4

cvmts.pval, 2
cvmts.test, 4