Package ‘CMC’

February 15, 2013

Type Package

Title Cronbach-Mesbah Curve

Version 1.0

Date 2010-03-13

Author Michela Cameletti and Valeria Caviezel

Maintainer Michela Cameletti <michela.cameletti@unibg.it>

Description Calculation and plot of the stepwise Cronbach-Mesbah Curve

License GPL (>= 2)

LazyLoad yes

LazyData yes

Repository CRAN

Date/Publication 2012-10-29 13:13:38

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC-package</td>
<td>2</td>
</tr>
<tr>
<td>alpha.cronbach</td>
<td>3</td>
</tr>
<tr>
<td>alpha.curve</td>
<td>5</td>
</tr>
<tr>
<td>cain</td>
<td>7</td>
</tr>
</tbody>
</table>

Index 9
Description

This package calculates and plots the step-by-step Cronbach-Mesbach curve, that is a method, based on the Cronbach alpha coefficient of reliability, for checking the unidimensionality of a measurement scale.

Details

- **Package:** CMC
- **Type:** Package
- **Version:** 1.0
- **Date:** 2010-03-13
- **License:** GPL (>= 2)
- **LazyLoad:** yes

Author(s)

Michela Cameletti and Valeria Caviezel

Maintainer: Michela Cameletti < michela.cameletti@unibg.it >

References

alpha.cronbach

Cronbach reliability coefficient alpha

Description

The function computes the Cronbach reliability alpha coefficient denoted with \(\alpha \).

Usage

alpha.cronbach(x)

Arguments

- **x**: an object of class data.frame or matrix with \(n \) subjects in the rows and \(k \) items in the columns.

Details

Let \(X_1, \ldots, X_k \) be a set of items composing a test and measuring the same underlying unidimensional latent trait. Moreover, let \(X_{ij} \) be the observed score (response) of a subject \(i \) (\(i = 1, \ldots, n \)) on an item \(j \) (\(j = 1, \ldots, k \)). Following the classical test theory, \(X_{ij} \) can be written as

\[
X_{ij} = \tau_{ij} + \epsilon_{ij}
\]

where \(\tau_{ij} \), the true score, and \(\epsilon_{ij} \), the error score, are two unknown random variables generally assumed to be independent (or at least not correlated). In particular, the true score is given by

\[
\tau_{ij} = \mu_j + a_i
\]

where \(\mu_j \) is a fixed effect and \(a_i \) is a random effect with zero mean and variance \(\sigma_a^2 \), whereas \(\epsilon_{ij} \) is a random effect with zero mean and variance \(\sigma_{\epsilon}^2 \). Moreover, \(\epsilon_{ij} \) and \(a_i \) are not correlated and for all \(j = 1, \ldots, k \) and for \(t \neq s \), \((a_t, \epsilon_{tj})\) and \((a_s, \epsilon_{sj})\) are independent.

The reliability \(\rho \) of any item is defined as the ratio of two variances: the variance of the true (unobserved) measure and the variance of the observed measure. Under the parallel model (see Lord and Novick, 1968), it can be shown that

\[
\rho = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_{\epsilon}^2}
\]

where \(\sigma_a^2 \) corresponds to the between-subject variability while \(\sigma_{\epsilon}^2 \) is the variance of the measurement error. It is possible to prove that \(\rho \) is also the constant correlation between any two items. The reliability of the sum of \(k \) items is given by the well-known **Spearman-Brown** formula:

\[
\hat{\rho} = \frac{k \rho}{k \rho + (1 - \rho)}.
\]

The maximum likelihood estimate of \(\hat{\rho} \), under the assumption of Normal distribution for the error, is known as the **Cronbach alpha coefficient**, denoted with \(\alpha \).
The formula for computing \(\alpha \) is given by

\[
\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{j=1}^{n} s_{j}^{2}}{s_{TOT}^{2}} \right]
\]

where \(s_{j}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \bar{X}_{j})^{2} \), \(s_{TOT}^{2} = \frac{1}{nk-1} \sum_{i=1}^{n} \sum_{j=1}^{k} (X_{ij} - \bar{X})^{2} \), \(\bar{X}_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \) and \(\bar{X} = \frac{1}{nk} \sum_{i=1}^{n} \sum_{j=1}^{k} X_{ij} \).

Value

The function returns the value \(\alpha \) of the Cronbach reliability coefficient computed as described above. The coefficient takes values in the interval \([0,1]\). If the actual variation amongst the subjects is very small, then the reliability of the test measured by \(\alpha \) tends to be small. On the other hand, if the variance amongst the subject is large, the reliability tends to be large.

Warning

No missing values are admitted.

Author(s)

Michela Cameletti and Valeria Caviezel

References

See Also

See Also `alpha.curve` and `cain`

Examples

data(cain)
out = alpha.cronbach(cain)
out
Description
The function calculates and plots the Cronbach-Mesbah Curve for a given data set.

Usage
alpha.curve(x)

Arguments
x an object of class data.frame or matrix with \(n \) subjects in the rows and \(k \) items in the columns.

Details
There is a direct connection between the Cronbach alpha coefficient \(\alpha \) (see \texttt{alpha.cronbach}) and the percentage of variance explained by the first component in the Principal Component Analysis (PCA) on \(k \) items. The PCA is usually based on the analysis of the roots of the correlation matrix \(R \) of \(k \) variables which, under the hypothesis of a parallel model (see Lord and Novick, 1968) is:

\[
R = \begin{pmatrix}
1 & \rho & ... & \rho \\
\rho & 1 & ... & \rho \\
... & ... & ... & ... \\
\rho & \rho & ... & 1
\end{pmatrix}
\]

This matrix has only two different roots. The greater root is \(\lambda_1 = 1 + \rho(k-1) \) and the other roots are \(\lambda_2 = ... = \lambda_k = 1 - \rho = \frac{k-1}{k+1} \). Thus, using the Spearman-Brown formula, we can express the reliability of the sum of the \(k \) items as follows:

\[
\hat{\rho} = \frac{k}{k-1} \left[1 - \frac{1}{\lambda_1} \right].
\]

This indicates that there is a monotonic relationship between \(\hat{\rho} \), estimated by \(\alpha \), and the first root \(\lambda_1 \), which in practice is estimated using the observed correlation matrix and thus gives the percentage of variance of the first principal component. Then, \(\alpha \) is considered as a measure of unidimensionality.

In particular, to assess the unidimensionality of a set of items, it is possible to plot a curve, called step-by-step Cronbach-Mesbah curve, which reports the number of items (from 2 to \(k \)) on the x-axis and the corresponding maximum \(\alpha \) coefficient on the y-axis obtained through the following steps:

1. first of all the Cronbach coefficient \(\alpha = \tilde{\alpha}^0 \) is computed using all the \(k \) items.
2. One at a time, the \(i \)-th item (\(i = 1, \ldots, k \)) is left out and the Cronbach coefficient, denoted by \(\alpha_{-i} \), is computed using the remaining \((k-1)\) items. All the coefficients are collected in a set
given by
\[\tilde{\alpha}^1 = (\alpha_{-1}, \ldots, \alpha_{-j}, \ldots, \alpha_{-k}) \]
where the apex refers to the number of item removed at each time. Then, the maximum of \(\tilde{\alpha}^1 \) is detected and the corresponding item is taken out. For example, if \(\alpha_{-j} \) is the maximum of \(\tilde{\alpha}^1 \), the \(j \)-th item is removed definitely from the scale.

3. The procedure of step 2 is repeated conditionally on the item removed previously. Supposing that item \(j \) was removed, the remaining items are left out one at a time and the corresponding Cronbach coefficient is calculated. This gives rise to the following set of \((k - 1) \) coefficients

\[\tilde{\alpha}^2 = \left(\alpha_{-(1,j)}, \ldots, \alpha_{-(j-1,j)}, \alpha_{-(j+1,j)}, \ldots, \alpha_{-(k,j)} \right). \]

The item corresponding to the maximum of \(\tilde{\alpha}^2 \) is then removed definitely. For example, if \(\alpha_{-1} \) is the maximum of \(\tilde{\alpha}^2 \), the first item is removed definitely from the scale together with the \(j \)-th item removed at step 2.

This procedure is repeated until only 2 items remain. Note that at each step the removed item is the one which leaves the scale with its maximum \(\alpha \) value. If we remove a poor item, the \(\alpha \) coefficient will increase, whereas if we remove a good item \(\alpha \) must decrease. More precisely, the Spearman-Brown formula shows that increasing the number of items leads to increase the reliability of the total score. Thus, a decrease of the Cronbach-Mesbah curve, after adding a variables, would suggest that the added variable do not constitute an unidimensional set with the other variables. On the other hand, if the step-by-step Cronbach-Mesbah curve increases monotonically, then all the items contribute to measure the same latent trait and the bank of items is characterized by unidimensionality.

Value

The functions returns:
1) an object of class data.frame with 3 columns. The first column \(N.Item \) contains the number of item used for computing the Cronbach \(\alpha \) coefficients. It contains the values between 2 and \(k \) corresponding, respectively, to the case when only 2 items or all the items are used. The second column, \(Alpha.Max \), refers to the maximums of the Cronbach coefficients calculated at each step of the procedure, that is \((\max \tilde{\alpha}^{k-2}, \ldots, \max \tilde{\alpha}^1, \max \tilde{\alpha}^0)\). Finally, the last column, \(Removed.Item \), reports the name of the item removed at each step, that is \((\arg \max \tilde{\alpha}^{k-2}, \ldots, \arg \max \tilde{\alpha}^1, \arg \max \tilde{\alpha}^0)\).
2) The corresponding Cronbach-Mesbah curve plot created using the first 2 columns of the data.frame described above. Note that also the names of the removed items are reported in the graph.

Warning

No missing values are admitted.

Author(s)

Michela Cameletti and Valeria Caviezel

References

See Also

See Also `alpha.cronbach` and `cain`

Examples

```r
data(cain)
out = alpha.curve(cain)
out
```

Description

The data are selected from Chapter 6 of Bond and Fox (2007). In particular we consider only 12 items (I7, I9, I11, I13, I14, I16, I20, I22, I23, I24, I25, I26) in the set of the original 26 items. The data are indicative of a person's feelings of anxiety toward computers. Each item has six response options (1 = strongly agree, 2 = agree, 3 = slightly agree, 4 = slightly disagree, 5 = disagree, 6 = strongly disagree). The subjects are 371 7-years students.

Usage

```r
data(cain)
```

Format

A data frame with 371 subjects and 12 items.

Source

See Also

See Also `alpha.cronbach` and `alpha.curve`

Examples

```r
data(cain)
dim(cain)
str(cain)
```
Index

*Topic datasets
 cain, 7

*Topic package
 alpha.cronbach, 3
 alpha.curve, 5
 CMC-package, 2

alpha.cronbach, 3, 5, 7, 8
alpha.curve, 4, 5, 8

cain, 4, 7, 7
CMC (CMC-package), 2
CMC-package, 2