Package ‘BNPdensity’

February 15, 2013

Version 0.7.9
Date 2012/08/01
Title Ferguson-Klass type algorithm for posterior normalized random measures
Author I. Prunster and L. E. Nieto. R implementation by Ernesto Barrios
Maintainer Ernesto Barrios <ebarrios@itam.mx>
Description Ferguson-Klass type algorithm for posterior normalized random measures
Depends R(>= 2.11.0)
License GPL (>= 2)
Encoding latin1
Repository CRAN
Date/Publication 2012-08-03 05:18:56
NeedsCompilation no

R topics documented:

BNPdensity-package .. 2
acidity ... 3
enzyme ... 3
Enzyme1.out ... 4
Enzyme2.out ... 5
galaxy ... 5
Galaxy1.out .. 6
Galaxy2.out .. 6
MixNRMII .. 7
MixNRMII2 ... 11

Index 16
Description

This package performs Bayesian nonparametric density estimation via a normalized random measure mixture model. The package allows the user to specify the mixture kernel, the mixing normalized measure and the choice of performing fully nonparametric mixtures on locations and scales, or semiparametric mixtures on locations only with common scale parameter. Options for the kernels are: two kernels with support in the real line (gaussian and double exponential), two more kernels in the positive line (gamma and lognormal) and one with bounded support (beta). The options for the normalized random measures are members of the class of normalized generalized gamma, which include the Dirichlet process, the normalized inversed gaussian process and the normalized stable process.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>BNPdensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.8.0</td>
</tr>
<tr>
<td>Date</td>
<td>2011-10-20</td>
</tr>
<tr>
<td>License</td>
<td>GPL version 2 or later</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

The package includes two main functions: MixNRMI1 and MixNRMI2, which implement semiparametric mixtures and fully nonparametric mixtures, respectively. Additionally, the package includes several other functions required for sampling from conditional distributions in the MCMC implementation. These functions intended for internal use only.

Author(s)

Barrios, E., Nieto-Barajas, L.E. and Pruenster, I. Maintainer: <ebarrios@itam.mx> Ernesto Barrios

References

See Also

MixNRMI1, MixNRMI2

Examples

e.example(MixNRMI1)
e.example(MixNRMI2)
acidity

Acidity Index Dataset

Description
Concerns an acidity index measured in a sample of 155 lakes in north-central Wisconsin.

Usage
data(acidity)

Format
A data frame with 155 observations on the following variable:

acidity A numeric vector.

Source
http://www.stats.bris.ac.uk/~peter/

References

Examples
data(acidity)
hist(acidity)

enzyme
Enzyme Dataset

Description
Concerns the distribution of enzymatic activity in the blood, for an enzyme involved in the metabolism of carcinogenetic substances, among a group of 245 unrelated individuals.

Usage
data(enzyme)
Format

A data frame with 244 observations on the following variable:

enzyme A numeric vector.

Source

http://www.stats.bris.ac.uk/~peter/

References

Examples

data(enzyme)
hist(enzyme)

Enzyme1.out

Fit of MixNRMI1 function to the enzyme dataset

Description

This object contains the output when setting set.seed(123456) and running the function MixNRMI1(x, Alpha = 1, Beta = 0.007, Gama = 0.5, distr.k = 2, distr.p0 = 2, mu.p0 = 10, sigma.p0 = 10, asigma = 1, bsigma = 1, Nit = 5000, Pbi = 0.2)

Usage

data(Enzyme1.out)

Details

See function MixNRMI1

Examples

data(Enzyme1.out)
Description

This object contains the output when setting set.seed(123456) and running the function MixNRMI2(x, Alpha = 1, Beta = 0.007, Gama = 0.5, distr.k = 2, distr.py0 = 2, mu.py0 = 10, sigma.py0 = 10, distr.pz0 = 2, mu.pz0 = 1, sigma.pz0 = 1, Nit = 5000, Pbi = 0.2)

Usage

data(Enzyme2.out)

Details

See function MixNRMI2

Examples

data(Enzyme2.out)

galaxy

Galaxy Data Set

Description

Velocities of 82 galaxies diverging from our own galaxy.

Usage

data(galaxy)

Format

A data frame with 82 observations on the following variable:

velocity A numeric vector.

Source

http://www.stats.bris.ac.uk/~peter/

References

Examples
data(galaxy)
hist(galaxy)

Galaxy1.out

Fit of MixNRMI1 function to the galaxy dataset

Description
This object contains the output when setting set.seed(123456) and running the function MixNRMI1(x, Alpha = 1, Beta = 0.015, Gama = 0.5, distr.k = 1, distr.p0 = 2, mu.p0 = 20, sigma.p0 = 20, asigma = 1, bsigma = 1, Nit = 5000, Pbi = 0.2)

Usage
data(Galaxy1.out)

Details
See function MixNRMI1.

Examples
data(Galaxy1.out)

Galaxy2.out

Fit of MixNRMI2 function to the galaxy dataset

Description
This object contains the output when setting set.seed(123456) and running the function MixNRMI2(x, Alpha = 1, Beta = 0.015, Gama = 0.5, distr.k = 1, distr.py0 = 2, mu.py0 = 20, sigma.py0 = 20, distr.pz0 = 2, mu.pz0 = 1, sigma.pz0 = 1, Nit = 5000, Pbi = 0.2)

Usage
data(Galaxy2.out)

Details
See function MixNRMI2.

Examples
data(Galaxy2.out)
MixNRMI1

Normalized Random Measures Mixture of Type I

Description

Bayesian nonparametric estimation based on normalized measures driven mixtures for locations.

Usage

MixNRMI1(x, probs = c(0.025, 0.5, 0.975), Alpha = 1, Beta = 0, Gama = 0.4, distr.k = 1, distr.p0 = 1, mu.p0 = mean(x), sigma.p0 = 1.5 * sd(x), asigma = 0.1, bsigma = 0.1, delta = 3, Delta = 2, Nm = 50, Nx = 100, Nit = 1000, Pbi = 0.1, epsilon = NULL, printtime = TRUE)

Arguments

x Numeric vector. Data set to which the density is fitted.
probs Numeric vector. Desired quantiles of the density estimates.
Alpha Numeric constant. Total mass of the centering measure. See details.
Beta Numeric positive constant. See details.
Gama Numeric constant. 0 \leq Gama \leq 1. See details.
distr.k Integer number identifying the mixture kernel: 1 = Normal; 2 = Gamma; 3 = Beta; 4 = Double Exponential; 5 = Lognormal.
distr.p0 Integer number identifying the centering measure: 1 = Normal; 2 = Gamma; 3 = Beta.
mu.p0 Numeric constant. Prior mean of the centering measure.
sigma.p0 Numeric constant. Prior standard deviation of the centering measure.
asigma Numeric positive constant. Shape parameter of the gamma prior on the standard deviation of the mixture kernel distr.k.
bsigma Numeric positive constant. Rate parameter of the gamma prior on the standard deviation of the mixture kernel distr.k.
delta Numeric positive constant. Metropolis-Hastings proposal variation coefficient for sampling sigma.
Delta Numeric positive constant. Metropolis-Hastings proposal variation coefficient for sampling the latent U.
Nm Integer constant. Number of jumps of the continuous component of the unnormalized process.
Nx Integer constant. Number of grid points for the evaluation of the density estimate.
Nit Integer constant. Number of MCMC iterations.
Pbi Numeric constant. Burn-in period proportion of Nit.
epsilon Numeric constant. Extension to the evaluation grid range. See details.
printtime Logical. If TRUE, prints out the execution time.
Details

This generic function fits a normalized random measure (NRMI) mixture model for density estimation (James et al. 2009). Specifically, the model assumes a normalized generalized gamma (NGG) prior for the locations (means) of the mixture kernel and a parametric prior for the common smoothing parameter sigma, leading to a semiparametric mixture model.

The details of the model are:

\[X_i | Y_i, \sigma \sim k(\cdot | Y_i, \sigma) \]
\[Y_i | P \sim P, \quad i = 1, \ldots, n \]
\[P \sim \text{NGG}(\text{Alpha, Beta, Gama; P}_0) \]
\[\sigma \sim \text{Gamma}(\text{asigma, bsigma}) \]

where \(X_i \)'s are the observed data, \(Y_i \)'s are latent (location) variables, \(\sigma \) is the smoothing parameter, \(k \) is a parametric kernel parameterized in terms of mean and standard deviation, \((\text{Alpha, Beta, Gama; P}_0)\) are the parameters of the NGG prior with \(P_0 \) being the centering measure, and \((\mu_0, \sigma_0)\) are the hyper-parameters of the gamma prior on the smoothing parameter sigma. In particular: \(\text{NGG}(\text{Alpha, 1, 0; P}_0) \) defines a Dirichlet process; \(\text{NGG}(1, \text{Beta, 1/2; P}_0) \) defines a Normalized inverse Gaussian process; and \(\text{NGG}(1, 0, \text{Gama; P}_0) \) defines a normalized stable process.

The evaluation grid ranges from \(\min(x) - \epsilon \) to \(\max(x) + \epsilon \). By default \(\epsilon = \text{sd}(x)/4 \).

Value

The function returns a list with the following components:

- \text{xx} Numeric vector. Evaluation grid.
- \text{qx} Numeric array. Matrix of dimension \(\text{Nx} \times \text{(length(probs) + 1)} \) with the posterior mean and the desired quantiles input in \text{probs}.
- \text{cpo} Numeric vector of \text{length(x)} with conditional predictive ordinates.
- \text{R} Numeric vector of \text{length(Nit*(1-Pbi))} with the number of mixtures components (clusters).
- \text{S} Numeric vector of \text{length(Nit*(1-Pbi))} with the values of common standard deviation sigma.
- \text{U} Numeric vector of \text{length(Nit*(1-Pbi))} with the values of the latent variable U.
- \text{Nx} Integer constant. Number of grid points for the evaluation of the density estimate.
- \text{Nit} Integer constant. Number of MCMC iterations.
- \text{Pbi} Numeric constant. Burn-in period proportion of \text{Nit}.
- \text{procTime} Numeric vector with execution time provided by \text{proc.time} function.

Warning

The function is computing intensive. Be patient.
Author(s)

Barrios, E., Nieto-Barajas, L.E. and Pruenster, I.

References

See Also

MixNRMI2

Examples

Example 1
Not run:
Data
data(acidity)
x <- acidity
Fitting the model under default specifications
out <- MixNRMI1(x)
Plotting density estimate + 95
attach(out)
m <- ncol(qx)
ymax <- max(qx[,m])
par(mfrow=c(1,1))
hist(x,probability=TRUE,breaks=20,col=grey(.9),ylim=c(ymin=0,ymax))
lines(xx,qx[,1],lwd=2)
lines(xx,qx[,2],lty=3,col=4)
lines(xx,qx[,m],lty=3,col=4)
detach()

End(Not run)

Example 2
Do not run
set.seed(123456)
data(enzyme)
x <- enzyme
Enzyme1.out <- MixNRMI1(x, Alpha = 1, Beta = 0.007, Gama = 0.5, distr.k = 2,
distr.p0 = 2, mu.p0 = 10, sigma.p0 = 10, a.sigma = 1, b.sigma = 1,
N = 5000, Pbi = 0.2)
The output of this run is already loaded in the package
To show results run the following
Data
data(enzyme)
x <- enzyme
data(Enzyme1.out)
attach(Enzyme1.out)
Plotting density estimate + 95% credible interval
m <- ncol(qx)
ymax <- max(qx[, m])
par(mfrow=c(1,1))
hist(x, probability=TRUE, breaks=20, col=grey(.9), ylim=c(0, ymax))
lines(xx, qx[, 1], lwd=2)
lines(xx, qx[, 2], lty=3, col=4)
lines(xx, qx[, m], lty=3, col=4)

Plotting number of clusters
par(mfrow=c(2,1))
plot(R, type="l", main="Trace of R")
hist(R, breaks=min(R-1):max(R), probability=TRUE)

Plotting sigma
par(mfrow=c(2,1))
plot(S, type="l", main="Trace of sigma")
hist(S, nclass=20, probability=TRUE, main="Histogram of sigma")

Plotting u
par(mfrow=c(2,1))
plot(U, type="l", main="Trace of U")
hist(U, nclass=20, probability=TRUE, main="Histogram of U")

Plotting cpo
par(mfrow=c(2,1))
plot(cpo, main="Scatter plot of CPO's")
boxplot(cpo, horizontal=TRUE, main="Boxplot of CPO's")
print(paste('Average log(CPO)=', round(mean(log(cpo)), 4)))
print(paste('Median log(CPO)=', round(median(log(cpo)), 4)))
detach()

Example 3
Do not run
set.seed(123456)
data(galaxy)
data(Galaxy1.out)
attach(Galaxy1.out)

Plotting density estimate + 95% credible interval
m <- ncol(qx)
ymax <- max(qx[, m])
par(mfrow=c(1,1))
hist(x, probability=TRUE, breaks=20, col=grey(.9), ylim=c(0, ymax))
lines(xx, qx[, 1], lwd=2)
lines(xx, qx[, 2], lty=3, col=4)
lines(xx, qx[, m], lty=3, col=4)

Plotting number of clusters
par(mfrow=c(2,1))
plot(R,type="l",main="Trace of R")
hist(R,breaks=min(R-1):max(R),probability=TRUE)
Plotting sigma
par(mfrow=c(2,1))
plot(S,type="l",main="Trace of sigma")
hist(S,nclass=20,probability=TRUE,main="Histogram of sigma")
Plotting u
par(mfrow=c(2,1))
plot(U,type="l",main="Trace of U")
hist(U,nclass=20,probability=TRUE,main="Histogram of U")
Plotting cpo
par(mfrow=c(2,1))
plot(cpo,main="Scatter plot of CPO's")
boxplot(cpo,horizontal=TRUE,main="Boxplot of CPO's")
print(paste('Average log(CPO)=',round(mean(log(cpo)),4)))
print(paste('Median log(CPO)=',round(median(log(cpo)),4)))
detach()

MixNRMI2

Normalized Random Measures Mixture of Type II

Description

Bayesian nonparametric estimation based on normalized measures driven mixtures for locations and scales.

Usage

MixNRMI2(x, probs = c(0.025, 0.5, 0.975), Alpha = 1, Beta = 0, Gama = 0.4, distr.k = 1, distr.py = 1, mu.py = mean(x), sigma.py = 1.5 * sd(x), distr.pz = 2, mu.pz = 1, sigma.pz = 10, delta = 3, Delta = 2, Nm = 50, Nx = 100, Nit = 1000, Pbi = 0.1, epsilon = NULL, printtime = TRUE)

Arguments

x Numeric vector. Data set to which the density is fitted.
probs Numeric vector. Desired quantiles of the density estimates.
Alpha Numeric constant. Total mass of the centering measure. See details.
Beta Numeric positive constant. See details.
Gama Numeric constant. 0 ≤ Gama ≤ 1. See details.
distr.k Integer number identifying the mixture kernel: 1 = Normal; 2 = Gamma; 3 = Beta; 4 = Double Exponential; 5 = Lognormal.
distr.py Integer number identifying the centering measure for locations: 1 = Normal; 2 = Gamma; 3 = Beta.
mu.py Numeric constant. Prior mean of the centering measure for locations.
sigma.py0 Numeric constant. Prior standard deviation of the centering measure for locations.
distr.pz0 Integer number identifying the centering measure for scales: 2 = Gamma, currently the only option.
mu.pz0 Numeric constant. Prior mean of the centering measure for scales.
sigma.pz0 Numeric constant. Prior standard deviation of the centering measure for scales.
delta Numeric positive constant. Metropolis-Hastings proposal variation coefficient for sampling the scales.
Delta Numeric positive constant. Metropolis-Hastings proposal variation coefficient for sampling the latent U.
Nm Integer constant. Number of jumps of the continuous component of the unnormalized process.
 Nx Integer constant. Number of grid points for the evaluation of the density estimate.
Nit Integer constant. Number of MCMC iterations.
Pbi Numeric constant. Burn-in period proportion of Nit.
epsilon Numeric constant. Extension to the evaluation grid range. See details.
printtime Logical. If TRUE, prints out the execution time.

Details
This generic function fits a normalized random measure (NRMI) mixture model for density estimation (James et al. 2009). Specifically, the model assumes a normalized generalized gamma (NGG) prior for both, locations (means) and standard deviations, of the mixture kernel, leading to a fully nonparametric mixture model.
The details of the model are:

\[X_i | Y_i, Z_i \sim k(\cdot | Y_i, Z_i) \]
\[(Y_i, Z_i) | P \sim P, i = 1, \ldots, n \]
\[P \sim \text{NGG}(\text{Alpha}, \text{Beta}, \text{Gama}; P_/zero.noslash) \]

where, \(X_i \)'s are the observed data, \((Y_i, Z_i)\)'s are bivariate latent (location and scale) vectors, \(k \) is a parametric kernel parameterized in terms of mean and standard deviation, \((\text{Alpha}, \text{Beta}, \text{Gama}; P_/zero.noslash)\) are the parameters of the NGG prior with a bivariate \(P_/zero.noslash \) being the centering measure. In particular, \(\text{NGG}(\text{Alpha}, 1, 0; P_/zero.noslash) \) defines a Dirichlet process; \(\text{NGG}(1, \text{Beta}, 1/2; P_/zero.noslash) \) defines a Normalized inverse Gaussian process; and \(\text{NGG}(1, 0, \text{Gama}; P_/zero.noslash) \) defines a normalized stable process. The bivariate measure \(P_/zero.noslash \) is assumed to have independent components, that is, \(P_/zero.noslash(Y, Z) = P_/zero.noslash(Y) * P_/zero.noslash(Z) \).
The evaluation grid ranges from min(x) - epsilon to max(x) + epsilon. By default epsilon=sd(x)/4.

Value
The function returns a list with the following components:

MixNRMI2

qx
- Numeric array. Matrix of dimension \(Nx \times (\text{length(probs)} + 1) \) with the posterior mean and the desired quantiles input in probs.

cpo
- Numeric vector of \(\text{length}(x) \) with conditional predictive ordnates.

R
- Numeric vector of \(\text{length}(\text{Nit} \times (1 - \text{Pbi})) \) with the number of mixtures components (clusters).

U
- Numeric vector of \(\text{length}(\text{Nit} \times (1 - \text{Pbi})) \) with the values of the latent variable \(U \).

Nx
- Integer constant. Number of grid points for the evaluation of the density estimate.

Nit
- Integer constant. Number of MCMC iterations.

Pbi
- Numeric constant. Burn-in period proportion of \(\text{Nit} \).

procTime
- Numeric vector with execution time provided by \text{proc.time} function.

Warning
- The function is computing intensive. Be patient.

Author(s)
- Barrios, E., Nieto-Barajas, L.E. and Pruenster, I.

References

See Also
- MixNRMI1

Examples

```r
## Not run:
### Example 1
# Data
data(acidity)
x <- acidity
# Fitting the model under default specifications
out <- MixNRMI2(x)
# Plotting density estimate + 95
attach(out)
m <- ncol(qx)
ymax <- max(qx[,m])
par(mfrow=c(1,1))
hist(x,probability=TRUE,breaks=20,col=grey(.9),ylim=c(0,ymax))
lines(xx,qx[,1],lwd=2)
```
```r
lines(xx,qx[,2],lty=3,col=4)
lines(xx,qx[,m],lty=3,col=4)
detach()

## End(Not run)

### Example 2
## Do not run
# set.seed(123456)
# data(enzyme)
# x <- enzyme
# Enzyme2.out <- MixNRMI2(x, Alpha = 1, Beta = 0.007, Gama = 0.5, distr.k = 2,
#                          distr.py = 2, mu.py = 1, sigma.py = 1,
#                          distr.pz = 2, mu.pz = 1, sigma.pz = 1,
#                          Nit = 5000, Pbi = 0.2)
# The output of this run is already loaded in the package
# To show results run the following
# Data
data(enzyme)
x <- enzyme
data(Enzyme2.out)
attach(Enzyme2.out)
# Plotting density estimate + 95% credible interval
m <- ncol(qx)
ymax <- max(qx[,m])
par(mfrow=c(1,1))
hist(x,probability=TRUE,breaks=20, col=grey(.9), ylim=c(0,ymax))
lines(xx,qx[,1],lwd=2)
lines(xx,qx[,2],lty=3,col=4)
lines(xx,qx[,m],lty=3,col=4)
# Plotting number of clusters
par(mfrow=c(2,1))
plot(R,type="l",main="Trace of R")
hist(R,breaks=min(R-1):max(R),probability=TRUE)
# Plotting u
par(mfrow=c(2,1))
plot(U,type="l",main="Trace of U")
hist(U,nclass=20,probability=TRUE,main="Histogram of U")
# Plotting cpo
par(mfrow=c(2,1))
plot(cpo,main="Scatter plot of CPO's")
boxplot(cpo,horizontal=TRUE,main="Boxplot of CPO's")
print(paste('Average log(CPO)=',round(mean(log(cpo)),4)))
print(paste('Median log(CPO)=',round(median(log(cpo)),4)))
detach()

### Example 3
## Do not run
# set.seed(123456)
# data(galaxy)
# x <- galaxy
# Galaxy2.out <- MixNRMI2(x, Alpha = 1, Beta = 0.015, Gama = 0.5, distr.k = 1,
#                         distr.py = 2, mu.py = 20, sigma.py = 20,
#                         distr.pz = 2, mu.pz = 20, sigma.pz = 20,
```

MixNRMI2

distr.pz/zero/zero = 2, mu.pz/zero = 1, sigma.pz/zero = 1,
Nit = 5000, Pbi = 0.2)
The output of this run is already loaded in the package
To show results run the following
Data
data(galaxy)
x <- galaxy
data(Galaxy2.out)
attach(Galaxy2.out)

Plotting density estimate + 95% credible interval
m <- ncol(qx)
ymax <- max(qx[,m])
par(mfrow=c(1,1))
hist(x,probability=TRUE,breaks=20,col=grey(.9),ylim=c(0,ymax))
lines(xx,qx[,1],lwd=2)
lines(xx,qx[,2],lty=3,col=4)
lines(xx,qx[,m],lty=3,col=4)

Plotting number of clusters
par(mfrow=c(2,1))
plot(R,type="l",main="Trace of R")
hist(R,breaks=min(R-1):max(R),probability=TRUE)

Plotting u
par(mfrow=c(2,1))
plot(U,type="l",main="Trace of U")
hist(U,nclass=20,probability=TRUE,main="Histogram of U")

Plotting cpo
par(mfrow=c(2,1))
plot(cpo,main="Scatter plot of CPO's")
boxplot(cpo,horizontal=TRUE,main="Boxplot of CPO's")
print(paste('Average log(CPO)=' ,round(mean(log(cpo)),4))))
print(paste('Median log(CPO)=' ,round(median(log(cpo)),4))))
detach()
Index

*Topic datasets
 acidity, 3
 enzyme, 3
 Enzyme1.out, 4
 Enzyme2.out, 5
 galaxy, 5
 Galaxy1.out, 6
 Galaxy2.out, 6

*Topic distribution
 MixNRMI1, 7
 MixNRMI2, 11

*Topic models
 MixNRMI1, 7
 MixNRMI2, 11

*Topic nonparametrics
 MixNRMI1, 7
 MixNRMI2, 11

*Topic package
 BNPdensity-package, 2

acidity, 3

BNPdensity (BNPdensity-package), 2
BNPdensity-package, 2

enzyme, 3
Enzyme1.out, 4
Enzyme2.out, 5

galaxy, 5
Galaxy1.out, 6
Galaxy2.out, 6

MixNRMI1, 2, 7, 13
MixNRMI2, 2, 9, 11